In mathematics, the Ruelle zeta function is a zeta function associated with a dynamical system. It is named after mathematical physicist David Ruelle.
Formal definition
Let f be a function defined on a manifold M, such that the set of fixed points Fix(f) is finite for all n > 1. Further let φ be a function on M with values in d × d complex matrices. The zeta function of the first kind is
Examples
In the special case d = 1, φ = 1, we have
which is the Artin–Mazur zeta function.
The Ihara zeta function is an example of a Ruelle zeta function.
See also
References
- Lapidus, Michel L.; van Frankenhuijsen, Machiel (2006). Fractal geometry, complex dimensions and zeta functions. Geometry and spectra of fractal strings. Springer Monographs in Mathematics. New York, NY: Springer-Verlag. ISBN 0-387-33285-5. Zbl 1119.28005.
- Kotani, Motoko; Sunada, Toshikazu (2000). "Zeta functions of finite graphs". J. Math. Sci. Univ. Tokyo. 7: 7–25.
- Terras, Audrey (2010). Zeta Functions of Graphs: A Stroll through the Garden. Cambridge Studies in Advanced Mathematics. Vol. 128. Cambridge University Press. ISBN 978-0-521-11367-0. Zbl 1206.05003.
- Ruelle, David (2002). "Dynamical Zeta Functions and Transfer Operators" (PDF). Bulletin of AMS. 8 (59): 887–895.