This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Selective surface" – news · newspapers · books · scholar · JSTOR (July 2014) (Learn how and when to remove this message) |
In solar thermal collectors, a selective surface or selective absorber is a means of increasing its operation temperature and/or efficiency. The selectivity is defined as the ratio of solar radiation absorption (αsol) to thermal infrared radiation emission (εtherm).
Selective surfaces take advantage of the differing wavelengths of incident solar radiation and the emissive radiation from the absorbing surface:
- Solar radiation covers approximately the wavelengths 350 nm to 4000 nm; UV-A, visible and near infrared (NIR, or IR-A plus IR-B).
- Thermal infrared radiation, from materials with temperatures approximately in the interval -40 to 100 °C, covers approximately the wavelengths 4000 nm to 40,000 nm = 4 um to 40 um; The thermal infrared radiation interval being named or covered by: MIR, LWIR or IR-C.
Materials
Normally, a combination of materials is used. One of the first selective surfaces investigated was a semiconductor-metal tandem – simply copper with a layer of black cupric oxide. Silicon on metal is also another example. A different design has ceramic–metal composites (cermets) on metal substrates. Black chromium ("black chrome") and nickel-plated anodized aluminum is another selective surface that is very durable, highly resistant to humidity or oxidizing atmospheres and extreme temperatures, while being able to retain its selective properties, but expensive. One of the more popular designs – a multi-layer broadband solar absorber – consists of a metal substrate coated with multiple layers of metal and dielectric materials. While those have to be vacuum-deposited, they have been widely adopted due to their suitability for vacuum tubes.
Although ordinary black paint has high solar absorption, it also has high thermal emissivity, and thus it is not a selective surface.
Typical values for a selective surface might be 0.90 solar absorption and 0.10 thermal emissivity, but can range from 0.8/0.3 for paints on metal to 0.96/0.05 for commercial surfaces. Thermal emissivities as low as 0.02 have been obtained in laboratories.
Other applications
Selective surfaces are used for other applications than solar thermal collectors, such as low emissivity surfaces used in window glasses, which reflect thermal radiation and have high transmittance factors (being transparent) for visible sunlight.
See also
References
- "Absorbing Surfaces". www.impact-absorbing-surfaces.co.uk. Retrieved 2020-11-26.
- ^ Kennedy, Cheryl (2002). "Review of Mid- to High-Temperature Solar Selective Absorber Materials" (PDF). NREL. Retrieved 21 February 2018.
- Tesfamichael, Tuquabo; Wäckelgård, Ewa (1999-07-01). "Angular solar absorptance of absorbers used in solar thermal collectors". Applied Optics. 38 (19): 4189–4197. Bibcode:1999ApOpt..38.4189T. doi:10.1364/AO.38.004189. ISSN 2155-3165. PMID 18323901.
- "TiNOX energy". Alemco. 2018. Retrieved 21 February 2018.
- Renewable Clean Energy, 23 January 2023
External links
- Selective Surface for efficient Solar Thermal Conversion
- Table of absorption and emissivity for various materials