This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Similarity invariance" – news · newspapers · books · scholar · JSTOR (November 2019) (Learn how and when to remove this message) |
In linear algebra, similarity invariance is a property exhibited by a function whose value is unchanged under similarities of its domain. That is, is invariant under similarities if where is a matrix similar to A. Examples of such functions include the trace, determinant, characteristic polynomial, and the minimal polynomial.
A more colloquial phrase that means the same thing as similarity invariance is "basis independence", since a matrix can be regarded as a linear operator, written in a certain basis, and the same operator in a new basis is related to one in the old basis by the conjugation , where is the transformation matrix to the new basis.
See also
This mathematical analysis–related article is a stub. You can help Misplaced Pages by expanding it. |