Misplaced Pages

Isotopes of strontium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Strontium-88)

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of strontium" – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this message)
Isotopes of strontium (38Sr)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Sr synth 25.36 d ε Rb
Sr synth 1.35 d ε Rb
β Rb
γ
Sr 0.56% stable
Sr synth 64.84 d ε Rb
γ
Sr 9.86% stable
Sr 7% stable
Sr 82.6% stable
Sr synth 50.52 d β Y
Sr trace 28.90 y β Y
Standard atomic weight Ar°(Sr)

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: Sr (0.56%), Sr (9.86%), Sr (7.0%) and Sr (82.58%). Its standard atomic weight is 87.62(1).

Only Sr is radiogenic; it is produced by decay from the radioactive alkali metal Rb, which has a half-life of 4.88 × 10 years (i.e. more than three times longer than the current age of the universe). Thus, there are two sources of Sr in any material: primordial, formed during nucleosynthesis along with Sr, Sr and Sr; and that formed by radioactive decay of Rb. The ratio Sr/Sr is the parameter typically reported in geologic investigations; ratios in minerals and rocks have values ranging from about 0.7 to greater than 4.0 (see rubidium–strontium dating). Because strontium has an electron configuration similar to that of calcium, it readily substitutes for calcium in minerals.

In addition to the four stable isotopes, thirty-two unstable isotopes of strontium are known to exist, ranging from Sr to Sr. Radioactive isotopes of strontium primarily decay into the neighbouring elements yttrium (Sr and heavier isotopes, via beta minus decay) and rubidium (Sr, Sr and lighter isotopes, via positron emission or electron capture). The longest-lived of these isotopes, and the most relevantly studied, are Sr with a half-life of 28.9 years, Sr with a half-life of 64.853 days, and Sr (Sr) with a half-life of 50.57 days. All other strontium isotopes have half-lives shorter than 50 days, most under 100 minutes.

Strontium-89 is an artificial radioisotope used in treatment of bone cancer; this application utilizes its chemical similarity to calcium, which allows it to substitute calcium in bone structures. In circumstances where cancer patients have widespread and painful bony metastases, the administration of Sr results in the delivery of beta particles directly to the cancerous portions of the bone, where calcium turnover is greatest. Strontium-90 is a by-product of nuclear fission, present in nuclear fallout. The 1986 Chernobyl nuclear accident contaminated a vast area with Sr. It causes health problems, as it substitutes for calcium in bone, preventing expulsion from the body. Because it is a long-lived high-energy beta emitter, it is used in SNAP (Systems for Nuclear Auxiliary Power) devices. These devices hold promise for use in spacecraft, remote weather stations, navigational buoys, etc., where a lightweight, long-lived, nuclear-electric power source is required.

In 2020, researchers have found that mirror nuclides Sr and Br were found to not behave identically to each other as expected.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Sr 38 35 72.96570(43)# 25.3(14) ms β, p (63%) Kr (5/2−)
β (37%) Rb
Sr 38 36 73.95617(11)# 27.6(26) ms β Rb 0+
Sr 38 37 74.94995(24) 85.2(23) ms β (94.8%) Rb (3/2−)
β, p (5.2%) Kr
Sr 38 38 75.941763(37) 7.89(7) s β Rb 0+
β, p (0.0034%) Kr
Sr 38 39 76.9379455(85) 9.0(2) s β (99.92%) Rb 5/2+
β, p (0.08%) Kr
Sr 38 40 77.9321800(80) 156.1(27) s β Rb 0+
Sr 38 41 78.9297047(80) 2.25(10) min β Rb 3/2−
Sr 38 42 79.9245175(37) 106.3(15) min β Rb 0+
Sr 38 43 80.9232114(34) 22.3(4) min β Rb 1/2−
Sr 79.23(4) keV 390(50) ns IT Sr (5/2)−
Sr 89.05(7) keV 6.4(5) μs (7/2+)
Sr 38 44 81.9183998(64) 25.35(3) d EC Rb 0+
Sr 38 45 82.9175544(73) 32.41(3) h β Rb 7/2+
Sr 259.15(9) keV 4.95(12) s IT Sr 1/2−
Sr 38 46 83.9134191(13) Observationally Stable 0+ 0.0056(2)
Sr 38 47 84.9129320(30) 64.846(6) d EC Rb 9/2+
Sr 238.79(5) keV 67.63(4) min IT (86.6%) Sr 1/2−
β (13.4%) Rb
Sr 38 48 85.9092607247(56) Stable 0+ 0.0986(20)
Sr 2956.09(12) keV 455(7) ns IT Sr 8+
Sr 38 49 86.9088774945(55) Stable 9/2+ 0.0700(20)
Sr 388.5287(23) keV 2.805(9) h IT (99.70%) Sr 1/2−
EC (0.30%) Rb
Sr 38 50 87.905612253(6) Stable 0+ 0.8258(35)
Sr 38 51 88.907450808(98) 50.563(25) d β Y 5/2+
Sr 38 52 89.9077279(16) 28.91(3) y β Y 0+
Sr 38 53 90.9101959(59) 9.65(6) h β Y 5/2+
Sr 38 54 91.9110382(37) 2.611(17) h β Y 0+
Sr 38 55 92.9140243(81) 7.43(3) min β Y 5/2+
Sr 38 56 93.9153556(18) 75.3(2) s β Y 0+
Sr 38 57 94.9193583(62) 23.90(14) s β Y 1/2+
Sr 38 58 95.9217190(91) 1.059(8) s β Y 0+
Sr 38 59 96.9263756(36) 432(4) ms β (99.98%) Y 1/2+
β, n (0.02%) Y
Sr 308.13(11) keV 175.2(21) ns IT Sr 7/2+
Sr 830.83(23) keV 513(5) ns IT Sr (9/2+)
Sr 38 60 97.9286926(35) 653(2) ms β (99.77%) Y 0+
β, n (0.23%) Y
Sr 38 61 98.9328836(51) 269.2(10) ms β (99.90%) Y 3/2+
β, n (0.100%) Y
Sr 38 62 99.9357833(74) 202.1(17) ms β (98.89%) Y 0+
β, n (1.11%) Y
Sr 1618.72(20) keV 122(9) ns IT Sr (4−)
Sr 38 63 100.9406063(91) 113.7(17) ms β (97.25%) Y (5/2−)
β, n (2.75%) Y
Sr 38 64 101.944005(72) 69(6) ms β (94.5%) Y 0+
β, n (5.5%) Y
Sr 38 65 102.94924(22)# 53(10) ms β Y 5/2+#
Sr 38 66 103.95302(32)# 50.6(42) ms β Y 0+
Sr 38 67 10495900(54)# 39(5) ms β Y 5/2+#
Sr 38 68 105.96318(64)# 21(8) ms β Y 0+
Sr 38 69 106.96967(75)# 25# ms
1/2+#
Sr 38 70
This table header & footer:
  1. Sr – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold italics symbol as daughter – Daughter product is nearly stable.
  7. Bold symbol as daughter – Daughter product is stable.
  8. ( ) spin value – Indicates spin with weak assignment arguments.
  9. Believed to decay by ββ to Kr
  10. Used in rubidium–strontium dating
  11. ^ Fission product

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Strontium". CIAAW. 1969.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Dickin, Alan P. (2018). Radiogenic Isotope Geology (3 ed.). Cambridge: Cambridge University Press. ISBN 978-1-107-09944-9.
  5. Reddy, Eashwer K.; Robinson, Ralph G.; Mansfield, Carl M. (January 1986). "Strontium 89 for Palliation of Bone Metastases". Journal of the National Medical Association. 78 (1): 27–32. ISSN 0027-9684. PMC 2571189. PMID 2419578.
  6. Wilken, R.D.; Diehl, R. (1987). "Strontium-90 in environmental samples from Northern Germany before and after the Chernobyl accident". Radiochimica Acta. 41 (4): 157–162. doi:10.1524/ract.1987.41.4.157. S2CID 99369165.
  7. "Discovery by UMass Lowell-led team challenges nuclear theory". Space Daily. Retrieved 2022-06-26.
  8. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  9. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: