Misplaced Pages

Subject reduction

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (January 2025) (Learn how and when to remove this message)

In type theory, a type system has the property of subject reduction (also subject evaluation, type preservation or simply preservation) if evaluation of expressions does not cause their type to change. Formally, if ⊢ e1 : τ and e1e2 then ⊢ e2 : τ. Intuitively, this means one would not like to write a expression, in say Haskell, of type Int, and have it evaluate to a value v, only to find out that v is a string.

Together with progress, it is an important meta-theoretical property for establishing type soundness of a type system.

The opposite property, if Γ ⊢ e2 : τ and e1e2 then Γ ⊢ e1 : τ, is called subject expansion. It often does not hold as evaluation can erase ill-typed sub-terms of an expression, resulting in a well-typed one.

References

Γ {\displaystyle \Gamma \!\vdash }

This programming language theory or type theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: