The symmetric logarithmic derivative is an important quantity in quantum metrology , and is related to the quantum Fisher information .
Definition
Let
ρ
{\displaystyle \rho }
and
A
{\displaystyle A}
be two operators, where
ρ
{\displaystyle \rho }
is Hermitian and positive semi-definite . In most applications,
ρ
{\displaystyle \rho }
and
A
{\displaystyle A}
fulfill further properties, that also
A
{\displaystyle A}
is Hermitian and
ρ
{\displaystyle \rho }
is a density matrix (which is also trace-normalized), but these are not required for the definition.
The symmetric logarithmic derivative
L
ϱ
(
A
)
{\displaystyle L_{\varrho }(A)}
is defined implicitly by the equation
i
[
ϱ
,
A
]
=
1
2
{
ϱ
,
L
ϱ
(
A
)
}
{\displaystyle i={\frac {1}{2}}\{\varrho ,L_{\varrho }(A)\}}
where
[
X
,
Y
]
=
X
Y
−
Y
X
{\displaystyle =XY-YX}
is the commutator and
{
X
,
Y
}
=
X
Y
+
Y
X
{\displaystyle \{X,Y\}=XY+YX}
is the anticommutator. Explicitly, it is given by
L
ϱ
(
A
)
=
2
i
∑
k
,
l
λ
k
−
λ
l
λ
k
+
λ
l
⟨
k
|
A
|
l
⟩
|
k
⟩
⟨
l
|
{\displaystyle L_{\varrho }(A)=2i\sum _{k,l}{\frac {\lambda _{k}-\lambda _{l}}{\lambda _{k}+\lambda _{l}}}\langle k\vert A\vert l\rangle \vert k\rangle \langle l\vert }
where
λ
k
{\displaystyle \lambda _{k}}
and
|
k
⟩
{\displaystyle \vert k\rangle }
are the eigenvalues and eigenstates of
ϱ
{\displaystyle \varrho }
, i.e.
ϱ
|
k
⟩
=
λ
k
|
k
⟩
{\displaystyle \varrho \vert k\rangle =\lambda _{k}\vert k\rangle }
and
ϱ
=
∑
k
λ
k
|
k
⟩
⟨
k
|
{\displaystyle \varrho =\sum _{k}\lambda _{k}\vert k\rangle \langle k\vert }
.
Formally, the map from operator
A
{\displaystyle A}
to operator
L
ϱ
(
A
)
{\displaystyle L_{\varrho }(A)}
is a (linear) superoperator .
Properties
The symmetric logarithmic derivative is linear in
A
{\displaystyle A}
:
L
ϱ
(
μ
A
)
=
μ
L
ϱ
(
A
)
{\displaystyle L_{\varrho }(\mu A)=\mu L_{\varrho }(A)}
L
ϱ
(
A
+
B
)
=
L
ϱ
(
A
)
+
L
ϱ
(
B
)
{\displaystyle L_{\varrho }(A+B)=L_{\varrho }(A)+L_{\varrho }(B)}
The symmetric logarithmic derivative is Hermitian if its argument
A
{\displaystyle A}
is Hermitian:
A
=
A
†
⇒
[
L
ϱ
(
A
)
]
†
=
L
ϱ
(
A
)
{\displaystyle A=A^{\dagger }\Rightarrow ^{\dagger }=L_{\varrho }(A)}
The derivative of the expression
exp
(
−
i
θ
A
)
ϱ
exp
(
+
i
θ
A
)
{\displaystyle \exp(-i\theta A)\varrho \exp(+i\theta A)}
w.r.t.
θ
{\displaystyle \theta }
at
θ
=
0
{\displaystyle \theta =0}
reads
∂
∂
θ
[
exp
(
−
i
θ
A
)
ϱ
exp
(
+
i
θ
A
)
]
|
θ
=
0
=
i
(
ϱ
A
−
A
ϱ
)
=
i
[
ϱ
,
A
]
=
1
2
{
ϱ
,
L
ϱ
(
A
)
}
{\displaystyle {\frac {\partial }{\partial \theta }}{\Big }{\bigg \vert }_{\theta =0}=i(\varrho A-A\varrho )=i={\frac {1}{2}}\{\varrho ,L_{\varrho }(A)\}}
where the last equality is per definition of
L
ϱ
(
A
)
{\displaystyle L_{\varrho }(A)}
; this relation is the origin of the name "symmetric logarithmic derivative". Further, we obtain the Taylor expansion
exp
(
−
i
θ
A
)
ϱ
exp
(
+
i
θ
A
)
=
ϱ
+
1
2
θ
{
ϱ
,
L
ϱ
(
A
)
}
⏟
=
i
θ
[
ϱ
,
A
]
+
O
(
θ
2
)
{\displaystyle \exp(-i\theta A)\varrho \exp(+i\theta A)=\varrho +\underbrace {{\frac {1}{2}}\theta \{\varrho ,L_{\varrho }(A)\}} _{=i\theta }+{\mathcal {O}}(\theta ^{2})}
.
References
Braunstein, Samuel L.; Caves, Carlton M. (1994-05-30). "Statistical distance and the geometry of quantum states". Physical Review Letters . 72 (22). American Physical Society (APS): 3439–3443. Bibcode :1994PhRvL..72.3439B . doi :10.1103/physrevlett.72.3439 . ISSN 0031-9007 . PMID 10056200 .
Braunstein, Samuel L.; Caves, Carlton M. ; Milburn, G.J. (April 1996). "Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance". Annals of Physics . 247 (1): 135–173. arXiv :quant-ph/9507004 . Bibcode :1996AnPhy.247..135B . doi :10.1006/aphy.1996.0040 . S2CID 358923 .
Paris, Matteo G. A. (21 November 2011). "Quantum Estimation for Quantum Technology". International Journal of Quantum Information . 07 (supp01): 125–137. arXiv :0804.2981 . doi :10.1142/S0219749909004839 . S2CID 2365312 .
Categories :
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑