Misplaced Pages

Symmetric logarithmic derivative

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (December 2019) (Learn how and when to remove this message)

The symmetric logarithmic derivative is an important quantity in quantum metrology, and is related to the quantum Fisher information.

Definition

Let ρ {\displaystyle \rho } and A {\displaystyle A} be two operators, where ρ {\displaystyle \rho } is Hermitian and positive semi-definite. In most applications, ρ {\displaystyle \rho } and A {\displaystyle A} fulfill further properties, that also A {\displaystyle A} is Hermitian and ρ {\displaystyle \rho } is a density matrix (which is also trace-normalized), but these are not required for the definition.

The symmetric logarithmic derivative L ϱ ( A ) {\displaystyle L_{\varrho }(A)} is defined implicitly by the equation

i [ ϱ , A ] = 1 2 { ϱ , L ϱ ( A ) } {\displaystyle i={\frac {1}{2}}\{\varrho ,L_{\varrho }(A)\}}

where [ X , Y ] = X Y Y X {\displaystyle =XY-YX} is the commutator and { X , Y } = X Y + Y X {\displaystyle \{X,Y\}=XY+YX} is the anticommutator. Explicitly, it is given by

L ϱ ( A ) = 2 i k , l λ k λ l λ k + λ l k | A | l | k l | {\displaystyle L_{\varrho }(A)=2i\sum _{k,l}{\frac {\lambda _{k}-\lambda _{l}}{\lambda _{k}+\lambda _{l}}}\langle k\vert A\vert l\rangle \vert k\rangle \langle l\vert }

where λ k {\displaystyle \lambda _{k}} and | k {\displaystyle \vert k\rangle } are the eigenvalues and eigenstates of ϱ {\displaystyle \varrho } , i.e. ϱ | k = λ k | k {\displaystyle \varrho \vert k\rangle =\lambda _{k}\vert k\rangle } and ϱ = k λ k | k k | {\displaystyle \varrho =\sum _{k}\lambda _{k}\vert k\rangle \langle k\vert } .

Formally, the map from operator A {\displaystyle A} to operator L ϱ ( A ) {\displaystyle L_{\varrho }(A)} is a (linear) superoperator.

Properties

The symmetric logarithmic derivative is linear in A {\displaystyle A} :

L ϱ ( μ A ) = μ L ϱ ( A ) {\displaystyle L_{\varrho }(\mu A)=\mu L_{\varrho }(A)}
L ϱ ( A + B ) = L ϱ ( A ) + L ϱ ( B ) {\displaystyle L_{\varrho }(A+B)=L_{\varrho }(A)+L_{\varrho }(B)}

The symmetric logarithmic derivative is Hermitian if its argument A {\displaystyle A} is Hermitian:

A = A [ L ϱ ( A ) ] = L ϱ ( A ) {\displaystyle A=A^{\dagger }\Rightarrow ^{\dagger }=L_{\varrho }(A)}

The derivative of the expression exp ( i θ A ) ϱ exp ( + i θ A ) {\displaystyle \exp(-i\theta A)\varrho \exp(+i\theta A)} w.r.t. θ {\displaystyle \theta } at θ = 0 {\displaystyle \theta =0} reads

θ [ exp ( i θ A ) ϱ exp ( + i θ A ) ] | θ = 0 = i ( ϱ A A ϱ ) = i [ ϱ , A ] = 1 2 { ϱ , L ϱ ( A ) } {\displaystyle {\frac {\partial }{\partial \theta }}{\Big }{\bigg \vert }_{\theta =0}=i(\varrho A-A\varrho )=i={\frac {1}{2}}\{\varrho ,L_{\varrho }(A)\}}

where the last equality is per definition of L ϱ ( A ) {\displaystyle L_{\varrho }(A)} ; this relation is the origin of the name "symmetric logarithmic derivative". Further, we obtain the Taylor expansion

exp ( i θ A ) ϱ exp ( + i θ A ) = ϱ + 1 2 θ { ϱ , L ϱ ( A ) } = i θ [ ϱ , A ] + O ( θ 2 ) {\displaystyle \exp(-i\theta A)\varrho \exp(+i\theta A)=\varrho +\underbrace {{\frac {1}{2}}\theta \{\varrho ,L_{\varrho }(A)\}} _{=i\theta }+{\mathcal {O}}(\theta ^{2})} .

References

  1. Braunstein, Samuel L.; Caves, Carlton M. (1994-05-30). "Statistical distance and the geometry of quantum states". Physical Review Letters. 72 (22). American Physical Society (APS): 3439–3443. Bibcode:1994PhRvL..72.3439B. doi:10.1103/physrevlett.72.3439. ISSN 0031-9007. PMID 10056200.
  2. Braunstein, Samuel L.; Caves, Carlton M.; Milburn, G.J. (April 1996). "Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance". Annals of Physics. 247 (1): 135–173. arXiv:quant-ph/9507004. Bibcode:1996AnPhy.247..135B. doi:10.1006/aphy.1996.0040. S2CID 358923.
  3. Paris, Matteo G. A. (21 November 2011). "Quantum Estimation for Quantum Technology". International Journal of Quantum Information. 07 (supp01): 125–137. arXiv:0804.2981. doi:10.1142/S0219749909004839. S2CID 2365312.
Categories: