Misplaced Pages

Theories of iterated inductive definitions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (September 2021) (Learn how and when to remove this message)
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2021) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories I D ν {\displaystyle ID_{\nu }} are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.

Definition

Original definition

The formal theory IDω (and IDν in general) is an extension of Peano Arithmetic, formulated in the language LID, by the following axioms:

  • y x ( M y ( P y M , x ) x P y M ) {\displaystyle \forall y\forall x({\mathfrak {M}}_{y}(P_{y}^{\mathfrak {M}},x)\rightarrow x\in P_{y}^{\mathfrak {M}})}
  • y ( x ( M y ( F , x ) F ( x ) ) x ( x P y M F ( x ) ) ) {\displaystyle \forall y(\forall x({\mathfrak {M}}_{y}(F,x)\rightarrow F(x))\rightarrow \forall x(x\in P_{y}^{\mathfrak {M}}\rightarrow F(x)))} for every LID-formula F(x)
  • y x 0 x 1 ( P < y M x 0 x 1 x 0 < y x 1 P x 0 M ) {\displaystyle \forall y\forall x_{0}\forall x_{1}(P_{<y}^{\mathfrak {M}}x_{0}x_{1}\leftrightarrow x_{0}<y\land x_{1}\in P_{x_{0}}^{\mathfrak {M}})}

The theory IDν with ν ≠ ω is defined as:

  • y x ( Z y ( P y M , x ) x P y M ) {\displaystyle \forall y\forall x(Z_{y}(P_{y}^{\mathfrak {M}},x)\rightarrow x\in P_{y}^{\mathfrak {M}})}
  • x ( M u ( F , x ) F ( x ) ) x ( P u M x F ( x ) ) {\displaystyle \forall x({\mathfrak {M}}_{u}(F,x)\rightarrow F(x))\rightarrow \forall x(P_{u}^{\mathfrak {M}}x\rightarrow F(x))} for every LID-formula F(x) and each u < ν
  • y x 0 x 1 ( P < y M x 0 x 1 x 0 < y x 1 P x 0 M ) {\displaystyle \forall y\forall x_{0}\forall x_{1}(P_{<y}^{\mathfrak {M}}x_{0}x_{1}\leftrightarrow x_{0}<y\land x_{1}\in P_{x_{0}}^{\mathfrak {M}})}

Explanation / alternate definition

ID1

A set I N {\displaystyle I\subseteq \mathbb {N} } is called inductively defined if for some monotonic operator Γ : P ( N ) P ( N ) {\displaystyle \Gamma :P(N)\rightarrow P(N)} , L F P ( Γ ) = I {\displaystyle LFP(\Gamma )=I} , where L F P ( f ) {\displaystyle LFP(f)} denotes the least fixed point of f {\displaystyle f} . The language of ID1, L I D 1 {\displaystyle L_{ID_{1}}} , is obtained from that of first-order number theory, L N {\displaystyle L_{\mathbb {N} }} , by the addition of a set (or predicate) constant IA for every X-positive formula A(X, x) in LN that only contains X (a new set variable) and x (a number variable) as free variables. The term X-positive means that X only occurs positively in A (X is never on the left of an implication). We allow ourselves a bit of set-theoretic notation:

  • F = { x N F ( x ) } {\displaystyle F=\{x\in N\mid F(x)\}}
  • s F {\displaystyle s\in F} means F ( s ) {\displaystyle F(s)}
  • For two formulas F {\displaystyle F} and G {\displaystyle G} , F G {\displaystyle F\subseteq G} means x F ( x ) G ( x ) {\displaystyle \forall xF(x)\rightarrow G(x)} .

Then ID1 contains the axioms of first-order number theory (PA) with the induction scheme extended to the new language as well as these axioms:

  • ( I D 1 ) 1 : A ( I A ) I A {\displaystyle (ID_{1})^{1}:A(I_{A})\subseteq I_{A}}
  • ( I D 1 ) 2 : A ( F ) F I A F {\displaystyle (ID_{1})^{2}:A(F)\subseteq F\rightarrow I_{A}\subseteq F}

Where F ( x ) {\displaystyle F(x)} ranges over all L I D 1 {\displaystyle L_{ID_{1}}} formulas.

Note that ( I D 1 ) 1 {\displaystyle (ID_{1})^{1}} expresses that I A {\displaystyle I_{A}}  is closed under the arithmetically definable set operator Γ A ( S ) = { x N N A ( S , x ) } {\displaystyle \Gamma _{A}(S)=\{x\in \mathbb {N} \mid \mathbb {N} \models A(S,x)\}} , while ( I D 1 ) 2 {\displaystyle (ID_{1})^{2}}  expresses that I A {\displaystyle I_{A}}  is the least such (at least among sets definable in L I D 1 {\displaystyle L_{ID_{1}}} ).

Thus, I A {\displaystyle I_{A}}  is meant to be the least pre-fixed-point, and hence the least fixed point of the operator Γ A {\displaystyle \Gamma _{A}} .

IDν

To define the system of ν-times iterated inductive definitions, where ν is an ordinal, let {\displaystyle \prec }  be a primitive recursive well-ordering of order type ν. We use Greek letters to denote elements of the field of {\displaystyle \prec } . The language of IDν, L I D ν {\displaystyle L_{ID_{\nu }}} is obtained from L N {\displaystyle L_{\mathbb {N} }} by the addition of a binary predicate constant JA for every X-positive L N [ X , Y ] {\displaystyle L_{\mathbb {N} }} formula A ( X , Y , μ , x ) {\displaystyle A(X,Y,\mu ,x)} that contains at most the shown free variables, where X is again a unary (set) variable, and Y is a fresh binary predicate variable. We write x J A μ {\displaystyle x\in J_{A}^{\mu }} instead of J A ( μ , x ) {\displaystyle J_{A}(\mu ,x)} , thinking of x as a distinguished variable in the latter formula.

The system IDν is now obtained from the system of first-order number theory (PA) by expanding the induction scheme to the new language and adding the scheme ( T I ν ) : T I ( , F ) {\displaystyle (TI_{\nu }):TI(\prec ,F)} expressing transfinite induction along {\displaystyle \prec } for an arbitrary L I D ν {\displaystyle L_{ID_{\nu }}}  formula F {\displaystyle F}  as well as the axioms:

  • ( I D ν ) 1 : μ ν ; A μ ( J A μ ) J A μ {\displaystyle (ID_{\nu })^{1}:\forall \mu \prec \nu ;A^{\mu }(J_{A}^{\mu })\subseteq J_{A}^{\mu }}
  • ( I D ν ) 2 : μ ν ; A μ ( F ) F J A μ F {\displaystyle (ID_{\nu })^{2}:\forall \mu \prec \nu ;A^{\mu }(F)\subseteq F\rightarrow J_{A}^{\mu }\subseteq F}

where F ( x ) {\displaystyle F(x)}  is an arbitrary L I D ν {\displaystyle L_{ID_{\nu }}}  formula. In ( I D ν ) 1 {\displaystyle (ID_{\nu })^{1}}  and ( I D ν ) 2 {\displaystyle (ID_{\nu })^{2}}  we used the abbreviation A μ ( F ) {\displaystyle A^{\mu }(F)}  for the formula A ( F , ( λ γ y ; γ μ y J A γ ) , μ , x ) {\displaystyle A(F,(\lambda \gamma y;\gamma \prec \mu \land y\in J_{A}^{\gamma }),\mu ,x)} , where x {\displaystyle x}  is the distinguished variable. We see that these express that each J A μ {\displaystyle J_{A}^{\mu }} , for μ ν {\displaystyle \mu \prec \nu } , is the least fixed point (among definable sets) for the operator Γ A μ ( S ) = { n N | ( N , ( J A γ ) γ μ } {\displaystyle \Gamma _{A}^{\mu }(S)=\{n\in \mathbb {N} |(\mathbb {N} ,(J_{A}^{\gamma })_{\gamma \prec \mu }\}} . Note how all the previous sets J A γ {\displaystyle J_{A}^{\gamma }} , for γ μ {\displaystyle \gamma \prec \mu } , are used as parameters.

We then define I D ν = ξ ν I D ξ {\textstyle ID_{\prec \nu }=\bigcup _{\xi \prec \nu }ID_{\xi }} .

Variants

I D ^ ν {\displaystyle {\widehat {\mathsf {ID}}}_{\nu }} - I D ^ ν {\displaystyle {\widehat {\mathsf {ID}}}_{\nu }} is a weakened version of I D ν {\displaystyle {\mathsf {ID}}_{\nu }} . In the system of I D ^ ν {\displaystyle {\widehat {\mathsf {ID}}}_{\nu }} , a set I N {\displaystyle I\subseteq \mathbb {N} } is instead called inductively defined if for some monotonic operator Γ : P ( N ) P ( N ) {\displaystyle \Gamma :P(N)\rightarrow P(N)} , I {\displaystyle I} is a fixed point of Γ {\displaystyle \Gamma } , rather than the least fixed point. This subtle difference makes the system significantly weaker: P T O ( I D ^ 1 ) = ψ ( Ω ε 0 ) {\displaystyle PTO({\widehat {\mathsf {ID}}}_{1})=\psi (\Omega ^{\varepsilon _{0}})} , while P T O ( I D 1 ) = ψ ( ε Ω + 1 ) {\displaystyle PTO({\mathsf {ID}}_{1})=\psi (\varepsilon _{\Omega +1})} .

I D ν # {\displaystyle {\mathsf {ID}}_{\nu }\#} is I D ^ ν {\displaystyle {\widehat {\mathsf {ID}}}_{\nu }} weakened even further. In I D ν # {\displaystyle {\mathsf {ID}}_{\nu }\#} , not only does it use fixed points rather than least fixed points, and has induction only for positive formulas. This once again subtle difference makes the system even weaker: P T O ( I D 1 # ) = ψ ( Ω ω ) {\displaystyle PTO({\mathsf {ID}}_{1}\#)=\psi (\Omega ^{\omega })} , while P T O ( I D ^ 1 ) = ψ ( Ω ε 0 ) {\displaystyle PTO({\widehat {\mathsf {ID}}}_{1})=\psi (\Omega ^{\varepsilon _{0}})} .

W I D ν {\displaystyle {\mathsf {W-ID}}_{\nu }} is the weakest of all variants of I D ν {\displaystyle {\mathsf {ID}}_{\nu }} , based on W-types. The amount of weakening compared to regular iterated inductive definitions is identical to removing bar induction given a certain subsystem of second-order arithmetic. P T O ( W I D 1 ) = ψ 0 ( Ω × ω ) {\displaystyle PTO({\mathsf {W-ID}}_{1})=\psi _{0}(\Omega \times \omega )} , while P T O ( I D 1 ) = ψ ( ε Ω + 1 ) {\displaystyle PTO({\mathsf {ID}}_{1})=\psi (\varepsilon _{\Omega +1})} .

U ( I D ν ) {\displaystyle {\mathsf {U(ID}}_{\nu }{\mathsf {)}}} is an "unfolding" strengthening of I D ν {\displaystyle {\mathsf {ID}}_{\nu }} . It is not exactly a first-order arithmetic system, but captures what one can get by predicative reasoning based on ν-times iterated generalized inductive definitions. The amount of increase in strength is identical to the increase from ε 0 {\displaystyle \varepsilon _{0}} to Γ 0 {\displaystyle \Gamma _{0}} : P T O ( I D 1 ) = ψ ( ε Ω + 1 ) {\displaystyle PTO({\mathsf {ID}}_{1})=\psi (\varepsilon _{\Omega +1})} , while P T O ( U ( I D 1 ) ) = ψ ( Γ Ω + 1 ) {\displaystyle PTO({\mathsf {U(ID}}_{1}{\mathsf {)}})=\psi (\Gamma _{\Omega +1})} .

Results

  • Let ν > 0. If a ∈ T0 contains no symbol Dμ with ν < μ, then "a ∈ W0" is provable in IDν.
  • IDω is contained in Π 1 1 C A + B I {\displaystyle \Pi _{1}^{1}-CA+BI} .
  • If a Π 2 0 {\displaystyle \Pi _{2}^{0}} -sentence x y φ ( x , y ) ( φ Σ 1 0 ) {\displaystyle \forall x\exists y\varphi (x,y)(\varphi \in \Sigma _{1}^{0})} is provable in IDν, then there exists p N {\displaystyle p\in N} such that n p k < H D 0 D ν n 0 ( 1 ) φ ( n , k ) {\displaystyle \forall n\geq p\exists k<H_{D_{0}D_{\nu }^{n}0}(1)\varphi (n,k)} .
  • If the sentence A is provable in IDν for all ν < ω, then there exists k ∈ N such that k D ν k 0 A N {\displaystyle \vdash _{k}^{D_{\nu }^{k}0}A^{N}} .

Proof-theoretic ordinals

  • The proof-theoretic ordinal of ID is equal to ψ 0 ( Ω ν ) {\displaystyle \psi _{0}(\Omega _{\nu })} .
  • The proof-theoretic ordinal of IDν is equal to ψ 0 ( ε Ω ν + 1 ) = ψ 0 ( Ω ν + 1 ) {\displaystyle \psi _{0}(\varepsilon _{\Omega _{\nu }+1})=\psi _{0}(\Omega _{\nu +1})} .
  • The proof-theoretic ordinal of I D ^ < ω {\displaystyle {\widehat {ID}}_{<\omega }} is equal to Γ 0 {\displaystyle \Gamma _{0}} .
  • The proof-theoretic ordinal of I D ^ ν {\displaystyle {\widehat {ID}}_{\nu }} for ν < ω {\displaystyle \nu <\omega } is equal to φ ( φ ( ν , 0 ) , 0 ) {\displaystyle \varphi (\varphi (\nu ,0),0)} .
  • The proof-theoretic ordinal of I D ^ φ ( α , β ) {\displaystyle {\widehat {ID}}_{\varphi (\alpha ,\beta )}} is equal to φ ( 1 , 0 , φ ( α + 1 , β 1 ) ) {\displaystyle \varphi (1,0,\varphi (\alpha +1,\beta -1))} .
  • The proof-theoretic ordinal of I D ^ < φ ( 0 , α ) {\displaystyle {\widehat {ID}}_{<\varphi (0,\alpha )}} for α > 1 {\displaystyle \alpha >1} is equal to φ ( 1 , α , 0 ) {\displaystyle \varphi (1,\alpha ,0)} .
  • The proof-theoretic ordinal of I D ^ < ν {\displaystyle {\widehat {ID}}_{<\nu }} for ν ε 0 {\displaystyle \nu \geq \varepsilon _{0}} is equal to φ ( 1 , ν , 0 ) {\displaystyle \varphi (1,\nu ,0)} .
  • The proof-theoretic ordinal of I D ν # {\displaystyle ID_{\nu }\#} is equal to φ ( ω ν , 0 ) {\displaystyle \varphi (\omega ^{\nu },0)} .
  • The proof-theoretic ordinal of I D < ν # {\displaystyle ID_{<\nu }\#} is equal to φ ( 0 , ω ν + 1 ) {\displaystyle \varphi (0,\omega ^{\nu +1})} .
  • The proof-theoretic ordinal of W - I D φ ( α , β ) {\displaystyle W{\textrm {-}}ID_{\varphi (\alpha ,\beta )}} is equal to ψ 0 ( Ω φ ( α , β ) × φ ( α + 1 , β 1 ) ) {\displaystyle \psi _{0}(\Omega _{\varphi (\alpha ,\beta )}\times \varphi (\alpha +1,\beta -1))} .
  • The proof-theoretic ordinal of W - I D < φ ( α , β ) {\displaystyle W{\textrm {-}}ID_{<\varphi (\alpha ,\beta )}} is equal to ψ 0 ( φ ( α + 1 , β 1 ) Ω φ ( α , β 1 ) + 1 ) {\displaystyle \psi _{0}(\varphi (\alpha +1,\beta -1)^{\Omega _{\varphi (\alpha ,\beta -1)}+1})} .
  • The proof-theoretic ordinal of U ( I D ν ) {\displaystyle U(ID_{\nu })} is equal to ψ 0 ( φ ( ν , 0 , Ω + 1 ) ) {\displaystyle \psi _{0}(\varphi (\nu ,0,\Omega +1))} .
  • The proof-theoretic ordinal of U ( I D < ν ) {\displaystyle U(ID_{<\nu })} is equal to ψ 0 ( Ω Ω + φ ( ν , 0 , Ω ) ) {\displaystyle \psi _{0}(\Omega ^{\Omega +\varphi (\nu ,0,\Omega )})} .
  • The proof-theoretic ordinal of ID1 (the Bachmann-Howard ordinal) is also the proof-theoretic ordinal of K P {\displaystyle {\mathsf {KP}}} , K P ω {\displaystyle {\mathsf {KP\omega }}} , C Z F {\displaystyle {\mathsf {CZF}}} and M L 1 V {\displaystyle {\mathsf {ML_{1}V}}} .
  • The proof-theoretic ordinal of W-IDω ( ψ 0 ( Ω ω ε 0 ) {\displaystyle \psi _{0}(\Omega _{\omega }\varepsilon _{0})} ) is also the proof-theoretic ordinal of W K P I {\displaystyle {\mathsf {W-KPI}}} .
  • The proof-theoretic ordinal of IDω (the Takeuti-Feferman-Buchholz ordinal) is also the proof-theoretic ordinal of K P I {\displaystyle {\mathsf {KPI}}} , Π 1 1 C A + B I {\displaystyle \Pi _{1}^{1}-{\mathsf {CA}}+{\mathsf {BI}}} and Δ 2 1 C A + B I {\displaystyle \Delta _{2}^{1}-{\mathsf {CA}}+{\mathsf {BI}}} .
  • The proof-theoretic ordinal of ID<ω^ω ( ψ 0 ( Ω ω ω ) {\displaystyle \psi _{0}(\Omega _{\omega ^{\omega }})} ) is also the proof-theoretic ordinal of Δ 2 1 C R {\displaystyle \Delta _{2}^{1}-{\mathsf {CR}}} .
  • The proof-theoretic ordinal of ID<ε0 ( ψ 0 ( Ω ε 0 ) {\displaystyle \psi _{0}(\Omega _{\varepsilon _{0}})} ) is also the proof-theoretic ordinal of Δ 2 1 C A {\displaystyle \Delta _{2}^{1}-{\mathsf {CA}}} and Σ 2 1 A C {\displaystyle \Sigma _{2}^{1}-{\mathsf {AC}}} .

References

  1. W. Buchholz, "An Independence Result for ( Π 1 1 -CA ) +BI {\displaystyle (\Pi _{1}^{1}{\textrm {-CA}}){\textrm {+BI}}} ", Annals of Pure and Applied Logic vol. 33 (1987).
Large countable ordinals
Categories: