Misplaced Pages

Higher alkane

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Triacontane)
This article or section possibly contains synthesis of material that does not verifiably mention or relate to the main topic. Relevant discussion may be found on the talk page. (May 2024) (Learn how and when to remove this message)
Alkanes having nine or more carbon atoms

Higher alkanes refer to alkanes with a high number of carbon atoms. There does not exist a formal definition for when an alkane is classified as a 'higher alkane', but one definition distinguishes the higher alkanes as the n-alkanes that are solid under room temperature.

Synthesis

This section needs expansion. You can help by adding to it. (April 2023)

Higher alkanes are naturally present in crude oil and can be obtained via fractional distillation. Saturated fatty acids decarboxylate to higher alkanes. Long olefins can be hydrogenated to yield higher alkanes. n-alkanes can be isolated via the formation of urea clathrates.They can also be synthesized through Kolbe electrolysis or other coupling reactions like the Wurtz reaction.

Uses

Alkanes from nonane to hexadecane (those alkanes with nine to sixteen carbon atoms) are liquids of higher viscosity, which are less suitable for use in gasoline. They form instead the major part of diesel, kerosene, and aviation fuel. Diesel fuels are characterised by their cetane number, cetane being an older name for hexadecane. However the higher melting points of these alkanes can cause problems at low temperatures and in polar regions, where the fuel becomes too thick to flow correctly. Mixtures of the normal alkanes are used as boiling point standards for simulated distillation by gas chromatography.

Alkanes from hexadecane upwards form the most important components of fuel oil and lubricating oil. In latter function they work at the same time as anti-corrosive agents, as their hydrophobic nature means that water cannot reach the metal surface. Many solid alkanes find use as paraffin wax, used for lubrication, electrical insulation, and candles. Paraffin wax should not be confused with beeswax, which consists primarily of esters.

Alkanes with a chain length of approximately 35 or more carbon atoms are found in bitumen (asphalt), used (for example) in road surfacing. However, the higher alkanes have little value and are usually split into lower alkanes by cracking.

Names

Some alkanes have non-IUPAC trivial names:

Properties

See also: List of straight-chain alkanes

Nonane is the lightest alkane to have a flash point above 25 °C, and is classified as flammable under the US National Library of Medicine.

The properties listed here refer to the straight-chain alkanes (or: n-alkanes).

Nonane to hexadecane

This group of n-alkanes is generally liquid under standard conditions.

Nonane Decane Undecane Dodecane Tridecane Tetradecane Pentadecane Hexadecane
Formula C9H20 C10H22 C11H24 C12H26 C13H28 C14H30 C15H32 C16H34
CAS number
Molar mass (g/mol) 128.26 142.29 156.31 170.34 184.37 198.39 212.42 226.45
Melting point (°C) −53.5 −29.7 −25.6 −9.6 −5.4 5.9 9.9 18.2
Boiling point (°C) 150.8 174.1 195.9 216.3 235.4 253.5 270.6 286.8
Density (g/ml at 20 °C) 0.71763 0.73005 0.74024 0.74869 0.75622 0.76275 0.76830 0.77344
Viscosity (cP at 20 °C) 0.7139 0.9256 1.185 1.503 1.880 2.335 2.863 3.474
Flash point (°C) 31 46 60 71 79 99 132 135
Autoignition
temperature
(°C)
205 210 205 235 201
Explosive limits 0.9–2.9% 0.8–2.6% 0.45–6.5%

Heptadecane to tetracosane

From this group on, the n-alkanes are generally solid at standard conditions.

Heptadecane Octadecane Nonadecane Icosane Heneicosane Docosane Tricosane Tetracosane
Formula C17H36 C18H38 C19H40 C20H42 C21H44 C22H46 C23H48 C24H50
CAS number
Molar mass (g/mol) 240.47 254.50 268.53 282.55 296.58 310.61 324.63 338.66
Melting point (°C) 21 28–30 32–34 36.7 40.5 42 48–50 52
Boiling point (°C) 302 317 330 342.7 356.5 224 at 2 kPa 380 391.3
Density (g/ml) 0.777 0.777 0.786 0.7886 0.792 0.778 0.797 0.797
Flash point (°C) 148 166 168 176

Pentacosane to triacontane

Pentacosane Hexacosane Heptacosane Octacosane Nonacosane Triacontane
Formula C25H52 C26H54 C27H56 C28H58 C29H60 C30H62
CAS number
Molar mass (g/mol) 352.69 366.71 380.74 394.77 408.80 422.82
Melting point (°C) 54 56.4 59.5 64.5 63.7 65.8
Boiling point (°C) 401 412.2 422 431.6 440.8 449.7
Density (g/ml) 0.801 0.778 0.780 0.807 0.808 0.810

Hentriacontane to hexatriacontane

Hentriacontane Dotriacontane Tritriacontane Tetratriacontane Pentatriacontane Hexatriacontane
Formula C31H64 C32H66 C33H68 C34H70 C35H72 C36H74
CAS number
Molar mass (g/mol) 436.85 450.88 464.90 478.93 492.96 506.98
Melting point (°C) 67.9 69 70–72 72.6 75 74–76
Boiling point (°C) 458 467 474 285.4 at 0.4 kPa 490 265 at 130 Pa
Density (g/ml) 0.781 at 68 °C 0.812 0.811 0.812 0.813 0.814

Heptatriacontane to dotetracontane

Heptatriacontane Octatriacontane Nonatriacontane Tetracontane Hentetracontane Dotetracontane
Formula C37H76 C38H78 C39H80 C40H82 C41H84 C42H86
CAS number
Molar mass (g/mol) 520.99 535.03 549.05 563.08 577.11 591.13
Melting point (°C) 77 79 78 84 83 86
Boiling point (°C) 504.14 510.93 517.51 523.88 530.75 536.07
Density (g/ml) 0.815 0.816 0.817 0.817 0.818 0.819

Tritetracontane to octatetracontane

Triatetracontane Tetratetracontane Pentatetracontane Hexatetracontane Heptatetracontane Octatetracontane
Formula C43H88 C44H90 C45H92 C46H94 C47H96 C48H98
CAS Number
Molar mass (g/mol) 605.15 619.18 633.21 647.23 661.26 675.29
Boiling point (°C) 541.91 547.57 553.1 558.42 563.6 568.68
Density (g/ml) 0.82 0.82 0.821 0.822 0.822 0.823

Nonatetracontane to tetrapentacontane

Nonatetracontane Pentacontane Henpentacontane Dopentacontane Tripentacontane Tetrapentacontane
Formula C49H100 C50H102 C51H104 C52H106 C53H108 C54H110
CAS number
Molar mass (g/mol) 689.32 703.34 717.37 731.39 745.42 759.45
Boiling point (°C) 573.6 578.4 583 587.6 592 596.38
Density (g/ml) 0.823 0.824 0.824 0.825 0.825 0.826

Pentapentacontane to hexacontane

Pentapentacontane Hexapentacontane Heptapentacontane Octapentacontane Nonapentacontane Hexacontane
Formula C55H112 C56H114 C57H116 C58H118 C59H120 C60H122
CAS number
Molar mass (g/mol) 773.48 787.50 801.53 815.58 829.59 843.6
Boiling point (°C) 600.6 604.7 ? 612.6 ? 620.2
Density (g/ml) 0.826 0.826 ? 0.827 ? 0.827

See also

References

  1. ASTM D5399-09, Standard Test Method for Boiling Point Distribution of Hydrocarbon Solvents by Gas Chromatography
  2. Donald Mackay, Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, ISBN 1420044397, p. 206
  3. "Nonane". PubChem. 26 October 2024.
  4. Karl Griesbaum, Arno Behr, Dieter Biedenkapp, Heinz-Werner Voges, Dorothea Garbe, Christian Paetz, Gerd Collin, Dieter Mayer Hartmut Höke "Hydrocarbons" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a13_227
  5. Weast, Robert C., ed. (1982). CRC Handbook of Chemistry and Physics (63rd ed.). Boca Raton, Fl: CRC Press. p. C-561.

External links

Alkanes
Category: