Misplaced Pages

Uniformly disconnected space

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, a uniformly disconnected space is a metric space ( X , d ) {\displaystyle (X,d)} for which there exists λ > 0 {\displaystyle \lambda >0} such that no pair of distinct points x , y X {\displaystyle x,y\in X} can be connected by a λ {\displaystyle \lambda } -chain. A λ {\displaystyle \lambda } -chain between x {\displaystyle x} and y {\displaystyle y} is a sequence of points x = x 0 , x 1 , , x n = y {\displaystyle x=x_{0},x_{1},\ldots ,x_{n}=y} in X {\displaystyle X} such that d ( x i , x i + 1 ) λ d ( x , y ) , i { 0 , , n } {\displaystyle d(x_{i},x_{i+1})\leq \lambda d(x,y),\forall i\in \{0,\ldots ,n\}} .

Properties

Uniform disconnectedness is invariant under quasi-Möbius maps.

References

  1. Heinonen, Juha (2001). Lectures on Analysis on Metric Spaces. Universitext. New York: Springer-Verlag. pp. x+140. ISBN 0-387-95104-0.
  2. Heer, Loreno (2017-08-28). "Some Invariant Properties of Quasi-Möbius Maps". Analysis and Geometry in Metric Spaces. 5 (1): 69–77. arXiv:1603.07521. doi:10.1515/agms-2017-0004. ISSN 2299-3274.
Metric spaces (Category)
Basic concepts
Main results
Maps
Types of
metric spaces
Sets
Examples
Manifolds
Functional analysis
and Measure theory
General topology
Related
Generalizations


Stub icon

This metric geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories: