Misplaced Pages

Kautz filter

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from William H. Kautz)

In signal processing, the Kautz filter, named after William H. Kautz, is a fixed-pole traversal filter, published in 1954.

Like Laguerre filters, Kautz filters can be implemented using a cascade of all-pass filters, with a one-pole lowpass filter at each tap between the all-pass sections.

Orthogonal set

Given a set of real poles { α 1 , α 2 , , α n } {\displaystyle \{-\alpha _{1},-\alpha _{2},\ldots ,-\alpha _{n}\}} , the Laplace transform of the Kautz orthonormal basis is defined as the product of a one-pole lowpass factor with an increasing-order allpass factor:

Φ 1 ( s ) = 2 α 1 ( s + α 1 ) {\displaystyle \Phi _{1}(s)={\frac {\sqrt {2\alpha _{1}}}{(s+\alpha _{1})}}}
Φ 2 ( s ) = 2 α 2 ( s + α 2 ) ( s α 1 ) ( s + α 1 ) {\displaystyle \Phi _{2}(s)={\frac {\sqrt {2\alpha _{2}}}{(s+\alpha _{2})}}\cdot {\frac {(s-\alpha _{1})}{(s+\alpha _{1})}}}
Φ n ( s ) = 2 α n ( s + α n ) ( s α 1 ) ( s α 2 ) ( s α n 1 ) ( s + α 1 ) ( s + α 2 ) ( s + α n 1 ) {\displaystyle \Phi _{n}(s)={\frac {\sqrt {2\alpha _{n}}}{(s+\alpha _{n})}}\cdot {\frac {(s-\alpha _{1})(s-\alpha _{2})\cdots (s-\alpha _{n-1})}{(s+\alpha _{1})(s+\alpha _{2})\cdots (s+\alpha _{n-1})}}} .

In the time domain, this is equivalent to

ϕ n ( t ) = a n 1 e α 1 t + a n 2 e α 2 t + + a n n e α n t {\displaystyle \phi _{n}(t)=a_{n1}e^{-\alpha _{1}t}+a_{n2}e^{-\alpha _{2}t}+\cdots +a_{nn}e^{-\alpha _{n}t}} ,

where ani are the coefficients of the partial fraction expansion as,

Φ n ( s ) = i = 1 n a n i s + α i {\displaystyle \Phi _{n}(s)=\sum _{i=1}^{n}{\frac {a_{ni}}{s+\alpha _{i}}}}

For discrete-time Kautz filters, the same formulas are used, with z in place of s.

Relation to Laguerre polynomials

If all poles coincide at s = -a, then Kautz series can be written as,
ϕ k ( t ) = 2 a ( 1 ) k 1 e a t L k 1 ( 2 a t ) {\displaystyle \phi _{k}(t)={\sqrt {2a}}(-1)^{k-1}e^{-at}L_{k-1}(2at)} ,
where Lk denotes Laguerre polynomials.

See also

References

  1. Kautz, William H. (1954). "Transient Synthesis in the Time Domain". I.R.E. Transactions on Circuit Theory. 1 (3): 29–39.
  2. den Brinker, A. C.; Belt, H. J. W. (1998). "Using Kautz Models in Model Reduction". In Prochazka, A.; Uhlir, J.; Kingsbury, N. G.; Rayner, P. J. W. (eds.). Signal Analysis and Prediction. Birkhäuser. p. 187. ISBN 978-0-8176-4042-2.
  3. Karjalainen, Matti; Paatero, Tuomas (2007). "Equalization of Loudspeaker and Room Responses Using Kautz Filters: Direct Least Squares Design". EURASIP Journal on Advances in Signal Processing. 2007. Hindawi Publishing Corporation: 1. doi:10.1155/2007/60949.
Category: