Misplaced Pages

Googol: Difference between revisions

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Browse history interactively← Previous editNext edit →Content deleted Content addedVisualWikitext
Revision as of 03:30, 12 March 2012 view source27.32.55.204 (talk)No edit summary← Previous edit Revision as of 02:38, 14 March 2012 view source 67.249.219.4 (talk) See alsoNext edit →
Line 16: Line 16:
* ] * ]
* ] * ]
If the number has 100 zeros then it is called a google...


==References== ==References==

Revision as of 02:38, 14 March 2012

Template:Two other uses A googol is the large number 10, that is, the digit 1 followed by 100 zeros:

10,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000,­000.

The term was coined in 1938 by 9-year-old Milton Sirotta, nephew of American mathematician Edward Kasner. Kasner popularized the concept in his 1940 book Mathematics and the Imagination.

Other names for googol include ten duotrigintillion on the short scale, ten thousand sexdecillion on the long scale, or ten sexdecilliard on the Peletier long scale.

A googol has no particular significance in mathematics, but is useful when comparing with other very large quantities such as the number of subatomic particles in the visible universe or the number of hypothetically possible chess moves. Edward Kasner used it to illustrate the difference between an unimaginably large number and infinity, and in this role it is sometimes used in teaching mathematics.

A googol is approximately 70! (factorial of 70). In the binary numeral system, one would need 333 bits to represent a googol, i.e, 1 googol ≈ 2, or exactly 2 ( 100 / l o g 10 2 ) {\displaystyle 2^{(100/\mathrm {log} _{10}2)}} .

See also

If the number has 100 zeros then it is called a google...

References

Notes
  1. Kasner, Edward and Newman, James R. (1940). Mathematics and the Imagination. Simon and Schuster, New York. ISBN 0486417034.{{cite book}}: CS1 maint: multiple names: authors list (link)

External links

Large numbers
Examples
in
numerical
order
Expression
methods
Notations
Operators
Related
articles
(alphabetical
order)
Categories: