Misplaced Pages

Johnson's SU-distribution

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Johnson SU distribution) Family of probability distributions
This article needs attention from an expert in statistics. The specific problem is: completion to reasonable standard for probability distributions. WikiProject Statistics may be able to help recruit an expert. (November 2012)
Johnson's SU
Probability density functionJohnsonSU
Cumulative distribution functionJohnson SU
Parameters γ , ξ , δ > 0 , λ > 0 {\displaystyle \gamma ,\xi ,\delta >0,\lambda >0} (real)
Support  to  + {\displaystyle -\infty {\text{ to }}+\infty }
PDF δ λ 2 π 1 1 + ( x ξ λ ) 2 e 1 2 ( γ + δ sinh 1 ( x ξ λ ) ) 2 {\displaystyle {\frac {\delta }{\lambda {\sqrt {2\pi }}}}{\frac {1}{\sqrt {1+\left({\frac {x-\xi }{\lambda }}\right)^{2}}}}e^{-{\frac {1}{2}}\left(\gamma +\delta \sinh ^{-1}\left({\frac {x-\xi }{\lambda }}\right)\right)^{2}}}
CDF Φ ( γ + δ sinh 1 ( x ξ λ ) ) {\displaystyle \Phi \left(\gamma +\delta \sinh ^{-1}\left({\frac {x-\xi }{\lambda }}\right)\right)}
Mean ξ λ exp δ 2 2 sinh ( γ δ ) {\displaystyle \xi -\lambda \exp {\frac {\delta ^{-2}}{2}}\sinh \left({\frac {\gamma }{\delta }}\right)}
Median ξ + λ sinh ( γ δ ) {\displaystyle \xi +\lambda \sinh \left(-{\frac {\gamma }{\delta }}\right)}
Variance λ 2 2 ( exp ( δ 2 ) 1 ) ( exp ( δ 2 ) cosh ( 2 γ δ ) + 1 ) {\displaystyle {\frac {\lambda ^{2}}{2}}(\exp(\delta ^{-2})-1)\left(\exp(\delta ^{-2})\cosh \left({\frac {2\gamma }{\delta }}\right)+1\right)}
Skewness λ 3 e δ 2 ( e δ 2 1 ) 2 ( ( e δ 2 ) ( e δ 2 + 2 ) sinh ( 3 γ δ ) + 3 sinh ( 2 γ δ ) ) 4 ( Variance X ) 1.5 {\displaystyle -{\frac {\lambda ^{3}{\sqrt {e^{\delta ^{-2}}}}(e^{\delta ^{-2}}-1)^{2}((e^{\delta ^{-2}})(e^{\delta ^{-2}}+2)\sinh({\frac {3\gamma }{\delta }})+3\sinh({\frac {2\gamma }{\delta }}))}{4(\operatorname {Variance} X)^{1.5}}}}
Excess kurtosis λ 4 ( e δ 2 1 ) 2 ( K 1 + K 2 + K 3 ) 8 ( Variance X ) 2 {\displaystyle {\frac {\lambda ^{4}(e^{\delta ^{-2}}-1)^{2}(K_{1}+K_{2}+K_{3})}{8(\operatorname {Variance} X)^{2}}}}
K 1 = ( e δ 2 ) 2 ( ( e δ 2 ) 4 + 2 ( e δ 2 ) 3 + 3 ( e δ 2 ) 2 3 ) cosh ( 4 γ δ ) {\displaystyle K_{1}=\left(e^{\delta ^{-2}}\right)^{2}\left(\left(e^{\delta ^{-2}}\right)^{4}+2\left(e^{\delta ^{-2}}\right)^{3}+3\left(e^{\delta ^{-2}}\right)^{2}-3\right)\cosh \left({\frac {4\gamma }{\delta }}\right)}
K 2 = 4 ( e δ 2 ) 2 ( ( e δ 2 ) + 2 ) cosh ( 3 γ δ ) {\displaystyle K_{2}=4\left(e^{\delta ^{-2}}\right)^{2}\left(\left(e^{\delta ^{-2}}\right)+2\right)\cosh \left({\frac {3\gamma }{\delta }}\right)}
K 3 = 3 ( 2 ( e δ 2 ) + 1 ) {\displaystyle K_{3}=3\left(2\left(e^{\delta ^{-2}}\right)+1\right)}

The Johnson's SU-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949. Johnson proposed it as a transformation of the normal distribution:

z = γ + δ sinh 1 ( x ξ λ ) {\displaystyle z=\gamma +\delta \sinh ^{-1}\left({\frac {x-\xi }{\lambda }}\right)}

where z N ( 0 , 1 ) {\displaystyle z\sim {\mathcal {N}}(0,1)} .

Generation of random variables

Let U be a random variable that is uniformly distributed on the unit interval . Johnson's SU random variables can be generated from U as follows:

x = λ sinh ( Φ 1 ( U ) γ δ ) + ξ {\displaystyle x=\lambda \sinh \left({\frac {\Phi ^{-1}(U)-\gamma }{\delta }}\right)+\xi }

where Φ is the cumulative distribution function of the normal distribution.

Johnson's SB-distribution

N. L. Johnson firstly proposes the transformation :

z = γ + δ log ( x ξ ξ + λ x ) {\displaystyle z=\gamma +\delta \log \left({\frac {x-\xi }{\xi +\lambda -x}}\right)}

where z N ( 0 , 1 ) {\displaystyle z\sim {\mathcal {N}}(0,1)} .

Johnson's SB random variables can be generated from U as follows:

y = ( 1 + e ( z γ ) / δ ) 1 {\displaystyle y={\left(1+{e}^{-\left(z-\gamma \right)/\delta }\right)}^{-1}}
x = λ y + ξ {\displaystyle x=\lambda y+\xi }

The SB-distribution is convenient to Platykurtic distributions (Kurtosis). To simulate SU, sample of code for its density and cumulative distribution function is available here

Applications

Johnson's S U {\displaystyle S_{U}} -distribution has been used successfully to model asset returns for portfolio management. This comes as a superior alternative to using the Normal distribution to model asset returns. An R package, JSUparameters, was developed in 2021 to aid in the estimation of the parameters of the best-fitting Johnson's S U {\displaystyle S_{U}} -distribution for a given dataset. Johnson distributions are also sometimes used in option pricing, so as to accommodate an observed volatility smile; see Johnson binomial tree.

An alternative to the Johnson system of distributions is the quantile-parameterized distributions (QPDs). QPDs can provide greater shape flexibility than the Johnson system. Instead of fitting moments, QPDs are typically fit to empirical CDF data with linear least squares.

Johnson's S U {\displaystyle S_{U}} -distribution is also used in the modelling of the invariant mass of some heavy mesons in the field of B-physics.

References

  1. ^ Johnson, N. L. (1949). "Systems of Frequency Curves Generated by Methods of Translation". Biometrika. 36 (1/2): 149–176. doi:10.2307/2332539. JSTOR 2332539.
  2. Johnson, N. L. (1949). "Bivariate Distributions Based on Simple Translation Systems". Biometrika. 36 (3/4): 297–304. doi:10.1093/biomet/36.3-4.297. JSTOR 2332669.
  3. Tsai, Cindy Sin-Yi (2011). "The Real World is Not Normal" (PDF). Morningstar Alternative Investments Observer.
  4. As an example, see: LHCb Collaboration (2022). "Precise determination of the B s 0 {\displaystyle {B}_{\mathrm {s} }^{0}} B ¯ s 0 {\displaystyle {\overline {B}}_{\mathrm {s} }^{0}} oscillation frequency". Nature Physics. 18: 1–5. arXiv:2104.04421. doi:10.1038/s41567-021-01394-x.

Further reading

  • Hill, I. D.; Hill, R.; Holder, R. L. (1976). "Algorithm AS 99: Fitting Johnson Curves by Moments". Journal of the Royal Statistical Society. Series C (Applied Statistics). 25 (2).
  • Jones, M. C.; Pewsey, A. (2009). "Sinh-arcsinh distributions" (PDF). Biometrika. 96 (4): 761. doi:10.1093/biomet/asp053.( Preprint)
  • Tuenter, Hans J. H. (November 2001). "An algorithm to determine the parameters of SU-curves in the Johnson system of probability distributions by moment matching". The Journal of Statistical Computation and Simulation. 70 (4): 325–347. doi:10.1080/00949650108812126. MR 1872992. Zbl 1098.62523.
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Category:
Johnson's SU-distribution Add topic