Misplaced Pages

Magnesium selenide

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
"MgSe" redirects here. For the Linux Mint Gnome Shell Extensions (MGSE), see Linux Mint § Software by Linux Mint.
Magnesium selenide
Names
Systematic IUPAC name Magnesium selenide
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.820 Edit this at Wikidata
EC Number
  • 215-201-0
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/Mg.Se/q+2;-2Key: AZUPEYZKABXNLR-UHFFFAOYSA-N
SMILES
  • .
Properties
Chemical formula MgSe
Molar mass 103.27 g/mol
Density 4.21 g/cm (rock-salt)
3.32 g/cm (zincblende)
Melting point 1,290 °C; 2,350 °F; 1,560 K
Band gap 3.9 eV (rock-salt) (300 K)
4.0 eV (zincblende) (300 K)
Structure
Crystal structure Rock-salt (cubic)
Zincblende (cubic)
Wurtzite (hexagonal)
Lattice constant a = 0.55 nm (rock-salt)
a = 0.59 nm (zincblende)
a = 0.415 nm, c = 0.672 nm (wurtzite)
Related compounds
Other anions Magnesium oxide
Magnesium sulfide
Magnesium telluride
Other cations Cadmium selenide
Mercury selenide
Zinc selenide
Related compounds Magnesium zinc selenide
Cadmium magnesium selenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Magnesium selenide is an inorganic compound with the chemical formula MgSe. It contains magnesium and selenium in a 1:1 ratio. It belongs to the II-VI family of semiconductor compounds.

Structure

Three crystal structures for MgSe have been experimentally characterized. The rock-salt structure is considered to be the most stable crystal structure that has been observed in bulk samples of MgSe, and a cubic lattice constant of 0.55 nm was deduced for this structure. Although attempts at preparing pure zincblende MgSe have been unsuccessful, the lattice constant of zincblende MgSe has been extrapolated from epitaxial thin films of zincblende MgxZn1-xSySe1-x and MgxZn1-xSe grown on gallium arsenide, the latter of which was prepared with a high magnesium content (up to 95% Mg, i.e., Mg0.95Zn0.05Se). There is good agreement between these and other extrapolations that the lattice constant of pure zincblende MgSe is 0.59 nm. The wurtzite structure of MgSe has been observed, but it is unstable and slowly converts to the rock-salt structure.

NiAs- and FeSi-type crystal structures of MgSe are predicted to form by subjecting the rock-salt crystal structure to extremely high pressures.

Electronic properties

Both rock-salt and zincblende MgSe are semiconductors. On the basis of different extrapolations, a room temperature bandgap of 4.0 eV has been recommended for zincblende MgSe. A room temperature bandgap of 3.9 eV was determined for rock-salt MgSe.

Preparation

Thin films of amorphous, wurtzite and rock-salt MgSe have been prepared by vacuum deposition of Mg and Se at cryogenic temperatures, followed by heating and annealing. Compound semiconductor alloys of MgSe, such as MgxZn1-xSe, have been prepared by molecular beam epitaxy.

Reactions

Samples of pure MgSe and Mg-rich MgxZn1-xSe (x > 0.7) readily react with water and oxidize in air.

References

  1. ^ Adachi, S., ed. (2004). "Zincblende Magnesium Selenide (β-MgSe)". Handbook on Physical Properties of Semiconductors. Kluwer Academic Publishers. pp. 37–50. doi:10.1007/1-4020-7821-8_3. ISBN 978-1-4020-7820-0.
  2. ^ Madelung, O., Rössler, U., Schulz, M., eds. (1999). "Magnesium oxide (MgO) physical properties (MgSe)". II-VI and I-VII Compounds; Semimagnetic Compounds. Landolt-Börnstein - Group III Condensed Matter. Vol. 41B. Springer-Verlag. pp. 1–8. doi:10.1007/10681719_218. ISBN 978-3-540-64964-9.
  3. ^ Jobst, B., Hommel, D., Lunz, U., Gerhard, T., Landwehr, G. (1996). "E0 band-gap energy and lattice constant of ternary Zn1−xMgxSe as functions of composition". Applied Physics Letters. 69 (1): 97–99. doi:10.1063/1.118132. ISSN 1077-3118.
  4. ^ Okuyama, H., Nakano, K., Miyajima, T., Akimoto, K. (1992). "Epitaxial growth of ZnMgSSe on GaAs substrate by molecular beam epitaxy". Journal of Crystal Growth. 117 (1–4): 139–143. Bibcode:1992JCrGr.117..139O. doi:10.1016/0022-0248(92)90732-X. ISSN 0022-0248. S2CID 97851344.
  5. ^ Mittendorf, H. (1965). "Röntgenographische und optische Untersuchungen aufgedampfter Schichten aus Erdalkalichalkogeniden". Zeitschrift für Physik (in German). 183 (2): 113–129. Bibcode:1965ZPhy..183..113M. doi:10.1007/BF01380788. ISSN 1434-6001. S2CID 121137813.
Magnesium compounds
Salts and covalent derivatives of the selenide ion
H2Se
H2Se2
+H
-H
He
Li2Se Be SexByOz CSe2
OCSe
(CH3)2Se
(NH4)2Se O F Ne
Na2Se MgSe Al2Se3 Si PxSey
-P
+S Cl Ar
K2Se CaSe Sc2Se3 TiSe2 V CrSe
Cr2Se3
MnSe
MnSe2
FeSe CoSe NiSe Cu2Se
CuSe
ZnSe GaSe
Ga2Se3
-Ga
GeSe
GeSe2
-Ge
As2Se3
As4Se3
Se
n
Br Kr
Rb2Se SrSe Y2Se3 Zr NbSe2
NbSe3
MoSe2 Tc Ru Rh Pd Ag2Se CdSe InSe
In2Se3
SnSe
SnSe2
-Sn
Sb2Se3 Te +I Xe
Cs2Se BaSe * LuSe
Lu2Se3
Hf TaSe2 WSe2
WSe3
ReSe2 Os Ir PtSe2 Au HgSe Tl2Se PbSe Bi2Se3 Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg CnSe Nh Fl Mc Lv Ts Og
 
* LaSe
La2Se3
CeSe
Ce2Se3
PrSe
Pr2Se3
NdSe
Nd2Se3
Pm SmSe
Sm2Se3
EuSe
Eu2Se3
GdSe
Gd2Se3
TbSe
Tb2Se3
DySe
Dy2Se3
HoSe
Ho2Se3
ErSe
Er2Se3
TmSe
Tm2Se3
YbSe
Yb2Se3
** Ac ThSe2 Pa USe2 Np PuSe Am Cm Bk Cf Es Fm Md No
Categories: