Misplaced Pages

Minkowski–Steiner formula

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.

The Minkowski–Steiner formula is used, together with the Brunn–Minkowski theorem, to prove the isoperimetric inequality. It is named after Hermann Minkowski and Jakob Steiner.

Statement of the Minkowski-Steiner formula

Let n 2 {\displaystyle n\geq 2} , and let A R n {\displaystyle A\subsetneq \mathbb {R} ^{n}} be a compact set. Let μ ( A ) {\displaystyle \mu (A)} denote the Lebesgue measure (volume) of A {\displaystyle A} . Define the quantity λ ( A ) {\displaystyle \lambda (\partial A)} by the Minkowski–Steiner formula

λ ( A ) := lim inf δ 0 μ ( A + B δ ¯ ) μ ( A ) δ , {\displaystyle \lambda (\partial A):=\liminf _{\delta \to 0}{\frac {\mu \left(A+{\overline {B_{\delta }}}\right)-\mu (A)}{\delta }},}

where

B δ ¯ := { x = ( x 1 , , x n ) R n | | x | := x 1 2 + + x n 2 δ } {\displaystyle {\overline {B_{\delta }}}:=\left\{x=(x_{1},\dots ,x_{n})\in \mathbb {R} ^{n}\left||x|:={\sqrt {x_{1}^{2}+\dots +x_{n}^{2}}}\leq \delta \right.\right\}}

denotes the closed ball of radius δ > 0 {\displaystyle \delta >0} , and

A + B δ ¯ := { a + b R n | a A , b B δ ¯ } {\displaystyle A+{\overline {B_{\delta }}}:=\left\{a+b\in \mathbb {R} ^{n}\left|a\in A,b\in {\overline {B_{\delta }}}\right.\right\}}

is the Minkowski sum of A {\displaystyle A} and B δ ¯ {\displaystyle {\overline {B_{\delta }}}} , so that

A + B δ ¯ = { x R n |   | x a | δ  for some  a A } . {\displaystyle A+{\overline {B_{\delta }}}=\left\{x\in \mathbb {R} ^{n}{\mathrel {|}}\ {\mathopen {|}}x-a{\mathclose {|}}\leq \delta {\mbox{ for some }}a\in A\right\}.}

Remarks

Surface measure

For "sufficiently regular" sets A {\displaystyle A} , the quantity λ ( A ) {\displaystyle \lambda (\partial A)} does indeed correspond with the ( n 1 ) {\displaystyle (n-1)} -dimensional measure of the boundary A {\displaystyle \partial A} of A {\displaystyle A} . See Federer (1969) for a full treatment of this problem.

Convex sets

When the set A {\displaystyle A} is a convex set, the lim-inf above is a true limit, and one can show that

μ ( A + B δ ¯ ) = μ ( A ) + λ ( A ) δ + i = 2 n 1 λ i ( A ) δ i + ω n δ n , {\displaystyle \mu \left(A+{\overline {B_{\delta }}}\right)=\mu (A)+\lambda (\partial A)\delta +\sum _{i=2}^{n-1}\lambda _{i}(A)\delta ^{i}+\omega _{n}\delta ^{n},}

where the λ i {\displaystyle \lambda _{i}} are some continuous functions of A {\displaystyle A} (see quermassintegrals) and ω n {\displaystyle \omega _{n}} denotes the measure (volume) of the unit ball in R n {\displaystyle \mathbb {R} ^{n}} :

ω n = 2 π n / 2 n Γ ( n / 2 ) , {\displaystyle \omega _{n}={\frac {2\pi ^{n/2}}{n\Gamma (n/2)}},}

where Γ {\displaystyle \Gamma } denotes the Gamma function.

Example: volume and surface area of a ball

Taking A = B R ¯ {\displaystyle A={\overline {B_{R}}}} gives the following well-known formula for the surface area of the sphere of radius R {\displaystyle R} , S R := B R {\displaystyle S_{R}:=\partial B_{R}} :

λ ( S R ) = lim δ 0 μ ( B R ¯ + B δ ¯ ) μ ( B R ¯ ) δ {\displaystyle \lambda (S_{R})=\lim _{\delta \to 0}{\frac {\mu \left({\overline {B_{R}}}+{\overline {B_{\delta }}}\right)-\mu \left({\overline {B_{R}}}\right)}{\delta }}}
= lim δ 0 [ ( R + δ ) n R n ] ω n δ {\displaystyle =\lim _{\delta \to 0}{\frac {\omega _{n}}{\delta }}}
= n R n 1 ω n , {\displaystyle =nR^{n-1}\omega _{n},}

where ω n {\displaystyle \omega _{n}} is as above.

References

Lp spaces
Basic concepts
L spaces
L spaces
L {\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
For Lebesgue measure
Applications & related
Measure theory
Basic concepts
Sets
Types of measures
Particular measures
Maps
Main results
Other results
For Lebesgue measure
Applications & related
Categories: