Misplaced Pages

Vitali convergence theorem

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Mathematical theorem

In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in L in terms of convergence in measure and a condition related to uniform integrability.

Preliminary definitions

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be a measure space, i.e. μ : A [ 0 , ] {\displaystyle \mu :{\mathcal {A}}\to } is a set function such that μ ( ) = 0 {\displaystyle \mu (\emptyset )=0} and μ {\displaystyle \mu } is countably-additive. All functions considered in the sequel will be functions f : X K {\displaystyle f:X\to \mathbb {K} } , where K = R {\displaystyle \mathbb {K} =\mathbb {R} } or C {\displaystyle \mathbb {C} } . We adopt the following definitions according to Bogachev's terminology.

  • A set of functions F L 1 ( X , A , μ ) {\displaystyle {\mathcal {F}}\subset L^{1}(X,{\mathcal {A}},\mu )} is called uniformly integrable if lim M + sup f F { | f | > M } | f | d μ = 0 {\displaystyle \lim _{M\to +\infty }\sup _{f\in {\mathcal {F}}}\int _{\{|f|>M\}}|f|\,d\mu =0} , i.e   ε > 0 ,     M ε > 0 : sup f F { | f | M ε } | f | d μ < ε {\displaystyle \forall \ \varepsilon >0,\ \exists \ M_{\varepsilon }>0:\sup _{f\in {\mathcal {F}}}\int _{\{|f|\geq M_{\varepsilon }\}}|f|\,d\mu <\varepsilon } .
  • A set of functions F L 1 ( X , A , μ ) {\displaystyle {\mathcal {F}}\subset L^{1}(X,{\mathcal {A}},\mu )} is said to have uniformly absolutely continuous integrals if lim μ ( A ) 0 sup f F A | f | d μ = 0 {\displaystyle \lim _{\mu (A)\to 0}\sup _{f\in {\mathcal {F}}}\int _{A}|f|\,d\mu =0} , i.e.   ε > 0 ,     δ ε > 0 ,     A A : μ ( A ) < δ ε sup f F A | f | d μ < ε {\displaystyle \forall \ \varepsilon >0,\ \exists \ \delta _{\varepsilon }>0,\ \forall \ A\in {\mathcal {A}}:\mu (A)<\delta _{\varepsilon }\Rightarrow \sup _{f\in {\mathcal {F}}}\int _{A}|f|\,d\mu <\varepsilon } . This definition is sometimes used as a definition of uniform integrability. However, it differs from the definition of uniform integrability given above.


When μ ( X ) < {\displaystyle \mu (X)<\infty } , a set of functions F L 1 ( X , A , μ ) {\displaystyle {\mathcal {F}}\subset L^{1}(X,{\mathcal {A}},\mu )} is uniformly integrable if and only if it is bounded in L 1 ( X , A , μ ) {\displaystyle L^{1}(X,{\mathcal {A}},\mu )} and has uniformly absolutely continuous integrals. If, in addition, μ {\displaystyle \mu } is atomless, then the uniform integrability is equivalent to the uniform absolute continuity of integrals.

Finite measure case

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be a measure space with μ ( X ) < {\displaystyle \mu (X)<\infty } . Let ( f n ) L p ( X , A , μ ) {\displaystyle (f_{n})\subset L^{p}(X,{\mathcal {A}},\mu )} and f {\displaystyle f} be an A {\displaystyle {\mathcal {A}}} -measurable function. Then, the following are equivalent :

  1. f L p ( X , A , μ ) {\displaystyle f\in L^{p}(X,{\mathcal {A}},\mu )} and ( f n ) {\displaystyle (f_{n})} converges to f {\displaystyle f} in L p ( X , A , μ ) {\displaystyle L^{p}(X,{\mathcal {A}},\mu )}  ;
  2. The sequence of functions ( f n ) {\displaystyle (f_{n})} converges in μ {\displaystyle \mu } -measure to f {\displaystyle f} and ( | f n | p ) n 1 {\displaystyle (|f_{n}|^{p})_{n\geq 1}} is uniformly integrable ;


For a proof, see Bogachev's monograph "Measure Theory, Volume I".

Infinite measure case

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be a measure space and 1 p < {\displaystyle 1\leq p<\infty } . Let ( f n ) n 1 L p ( X , A , μ ) {\displaystyle (f_{n})_{n\geq 1}\subseteq L^{p}(X,{\mathcal {A}},\mu )} and f L p ( X , A , μ ) {\displaystyle f\in L^{p}(X,{\mathcal {A}},\mu )} . Then, ( f n ) {\displaystyle (f_{n})} converges to f {\displaystyle f} in L p ( X , A , μ ) {\displaystyle L^{p}(X,{\mathcal {A}},\mu )} if and only if the following holds :

  1. The sequence of functions ( f n ) {\displaystyle (f_{n})} converges in μ {\displaystyle \mu } -measure to f {\displaystyle f}  ;
  2. ( f n ) {\displaystyle (f_{n})} has uniformly absolutely continuous integrals;
  3. For every ε > 0 {\displaystyle \varepsilon >0} , there exists X ε A {\displaystyle X_{\varepsilon }\in {\mathcal {A}}} such that μ ( X ε ) < {\displaystyle \mu (X_{\varepsilon })<\infty } and sup n 1 X X ε | f n | p d μ < ε . {\displaystyle \sup _{n\geq 1}\int _{X\setminus X_{\varepsilon }}|f_{n}|^{p}\,d\mu <\varepsilon .}

When μ ( X ) < {\displaystyle \mu (X)<\infty } , the third condition becomes superfluous (one can simply take X ε = X {\displaystyle X_{\varepsilon }=X} ) and the first two conditions give the usual form of Lebesgue-Vitali's convergence theorem originally stated for measure spaces with finite measure. In this case, one can show that conditions 1 and 2 imply that the sequence ( | f n | p ) n 1 {\displaystyle (|f_{n}|^{p})_{n\geq 1}} is uniformly integrable.

Converse of the theorem

Let ( X , A , μ ) {\displaystyle (X,{\mathcal {A}},\mu )} be measure space. Let ( f n ) n 1 L 1 ( X , A , μ ) {\displaystyle (f_{n})_{n\geq 1}\subseteq L^{1}(X,{\mathcal {A}},\mu )} and assume that lim n A f n d μ {\displaystyle \lim _{n\to \infty }\int _{A}f_{n}\,d\mu } exists for every A A {\displaystyle A\in {\mathcal {A}}} . Then, the sequence ( f n ) {\displaystyle (f_{n})} is bounded in L 1 ( X , A , μ ) {\displaystyle L^{1}(X,{\mathcal {A}},\mu )} and has uniformly absolutely continuous integrals. In addition, there exists f L 1 ( X , A , μ ) {\displaystyle f\in L^{1}(X,{\mathcal {A}},\mu )} such that lim n A f n d μ = A f d μ {\displaystyle \lim _{n\to \infty }\int _{A}f_{n}\,d\mu =\int _{A}f\,d\mu } for every A A {\displaystyle A\in {\mathcal {A}}} .

When μ ( X ) < {\displaystyle \mu (X)<\infty } , this implies that ( f n ) {\displaystyle (f_{n})} is uniformly integrable.

For a proof, see Bogachev's monograph "Measure Theory, Volume I".

Citations

  1. ^ Bogachev, Vladimir I. (2007). Measure Theory Volume I. New York: Springer. pp. 267–271. ISBN 978-3-540-34513-8.
Measure theory
Basic concepts
Sets
Types of measures
Particular measures
Maps
Main results
Other results
For Lebesgue measure
Applications & related
Category: