Misplaced Pages

Orthotransversal

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Orthotransversal

In Euclidean geometry, the orthotransversal of a point is the line defined as follows.

For a triangle ABC and a point P, three orthotraces, intersections of lines BC, CA, AB and perpendiculars of AP, BP, CP through P respectively are collinear. The line which includes these three points is called the orthotransversal of P.

Existence of it can proved by various methods such as a pole and polar, the dual of Desargues' involution theorem [ru] , and the Newton line theorem.

The tripole of the orthotransversal is called the orthocorrespondent of P, And the transformation P → P, the orthocorrespondent of P is called the orthocorrespondence.

Example

Properties

p ( p S A + q S B + r S C ) + a 2 q r : q ( p S A q S B + r S C ) + b 2 r p : r ( p S A + q S B r S C ) + c 2 p q , {\displaystyle p(-pS_{A}+qS_{B}+rS_{C})+a^{2}qr:q(pS_{A}-qS_{B}+rS_{C})+b^{2}rp:r(pS_{A}+qS_{B}-rS_{C})+c^{2}pq,}

where SA,SB,SC are Conway notation.

Orthopivotal cubic

The Locus of points P that P, P, and Q are collinear is a cubic curve. This is called the orthopivotal cubic of Q, O(Q). Every orthopivotal cubic passes through two Fermat points.

Example

See also

Notes

  1. ^ Gibert, Bernard (2003). "Orthocorrespondence and Orthopivotal Cubics" (PDF). Forum Geometricorum. 3.
  2. Eliud Lozada, César. "Extended glossary". faculty.evansville.edu.
  3. Cohl, Telv. "Extension of orthotransversal". AoPS.
  4. "Existence of Orthotransversal". AoPS.
  5. Bernard, Gibert (2003). "Antiorthocorrespondents of Circumconics". Forum Geometricorum. 3.
  6. Gibert, Bernard; van Lamoen, Floor (2003). "The Parasix Configuration and Orthocorrespondence". Forum Geometricorum. 3: 173.
  7. Evers, Manfred (2012). "Generalizing Orthocorrespondence". Forum Geometricorum. 12.
  8. Li4; S⊗; 和輝. "幾何引理維基" (PDF) (in Chinese).{{cite web}}: CS1 maint: numeric names: authors list (link)
  9. ^ Mathworld Orthocorrespondent.
  10. dagezjm. "Pedal triangle". AoPS.
  11. Li4. "圓錐曲線" (PDF) (in Chinese).{{cite web}}: CS1 maint: numeric names: authors list (link)
  12. Li4; S. "張志煥截線" (PDF) (in Chinese).{{cite web}}: CS1 maint: numeric names: authors list (link)
  13. S. "正交截線" (PDF) (in Chinese).
  14. "QA-Tf14: QA-Orthotransversal Point". ENCYCLOPEDIA OF QUADRI-FIGURES (EQF). Retrieved 2024-11-02.
  15. "Orthopivotal Cubics". Catalogue of Triangle Cubics.
  16. Gibert, Bernard. "Neuberg Cubics" (PDF).
  17. "K053". Cubic in Triangle Plane.

References

External links

Categories:
Orthotransversal Add topic