Misplaced Pages

Silver thiocyanate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Silver thiocyanate
Skeletal formula of silver thiocyanate
Skeletal formula of silver thiocyanate
Ball-and-stick model of silver thiocyanate
Ball-and-stick model of silver thiocyanate
Names
IUPAC name Silver(I) thiocyanate, Silver thiocyanate
Other names Thiocyanic acid, silver (1+) thiocyanate; Silver isothiocyanate; Silver sulphocyanide
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.015.395 Edit this at Wikidata
EC Number
  • 216-934-9
PubChem CID
UNII
UN number 3077
CompTox Dashboard (EPA)
InChI
  • InChI=1S/CHNS.Ag/c2-1-3;/h3H;/q;+1/p-1Key: RHUVFRWZKMEWNS-UHFFFAOYSA-M
SMILES
  • C(#N).
Properties
Chemical formula AgSCN
Appearance Colorless crystals
Odor Odorless
Melting point 170 °C (338 °F; 443 K)
decomposes
Solubility in water 0.14 mg/L (19.96 °C)
0.25 mg/L (21 °C)
6.68 mg/L (100 °C)
Solubility product (Ksp) 1.03·10
Solubility Insoluble in acids (reacts) except when concentrated, acetates, aq. nitrates
Solubility in silver nitrate 43.2 mg/L (25.2 °C, 3 nAgNO3/H2O)
Solubility in sulfur dioxide 14 mg/kg (0 °C)
Solubility in methanol 0.0022 mg/kg
Magnetic susceptibility (χ) −6.18·10 cm/mol
Structure
Crystal structure Monoclinic, mS32 (293 K)
Space group C2/c, No. 15 (293 K)
Point group 2/m (293 K)
Lattice constant a = 8.792(5) Å, b = 7.998(5) Å, c = 8.207(5) Å (293 K)α = 90°, β = 93.75(1)°, γ = 90°
Formula units (Z) 8
Thermochemistry
Heat capacity (C) 63 J/mol·K
Std molar
entropy
(S298)
131 J/mol·K
Std enthalpy of
formation
fH298)
88 kJ/mol
Hazards
GHS labelling:
Pictograms GHS07: Exclamation markGHS09: Environmental hazard
Signal word Warning
Hazard statements H302, H312, H332, H410
Precautionary statements P273, P280, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2 0 0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

Silver thiocyanate is the silver salt of thiocyanic acid with the formula AgSCN. Silver thiocyanate appears as a white crystalline powder. It is very commonly used in the synthesis of silver nanoparticles. Additionally, studies have found silver nanoparticles to be present in saliva present during the entire digestive process of silver nitrate. Silver thiocyanate is slightly soluble in water, with a solubility of 1.68 x 10 g/L. It is insoluble in ethanol, acetone, and acid.

Structure

AgSCN is monoclinic with 8 molecules per unit cell. Each SCN group has an almost linear molecular geometry, with bond angle 179.6(5)°. Weak Ag—Ag interactions of length 0.3249(2) nm to 0.3338(2) nm are present in the structure.

Production

Solution Reaction

Silver thiocyanate has been commonly produced by the reaction between silver nitrate and potassium thiocyanate.

AgNO 3 + KSCN KNO 3 + AgSCN {\displaystyle {\ce {AgNO3 + KSCN -> KNO3 + AgSCN}}}

Ion-Exchange Route

Silver thiocyanate may be formed via an ion exchange reaction. In this double displacement reaction, silver nitrate and ammonium thiocyanate are dissolved in distilled water to produce silver thiocyanate and ammonium nitrate.

AgNO 3 + NH 4 SCN NH 4 NO 3 + AgSCN {\displaystyle {\ce {AgNO3 + NH4SCN -> NH4 NO3 + AgSCN}}}

Additionally, silver thiocyanate can be formed through the double displacement reaction between ammonium thiocyanate and silver chloride to form a precipitate of silver thiocyanate.

AgCl + NH 4 SCN NH 4 Cl + AgSCN {\displaystyle {\ce {AgCl + NH4SCN -> NH4 Cl + AgSCN}}}

Uses

The most common use of silver thiocyanate is as a silver nanoparticle. Silver thiocyanate nanoparticles have been found in saliva throughout the entire artificial digestion of silver nitrate. The nanoparticles can also be used as good ion conductors.

Silver thiocyanate has also been used to absorb uv-visible light at values less than 500 nm. At longer wavelengths, silver thiocyanate has been found to have good photocatalytic properties.

Characterization

Upon production, silver thiocyanate can be characterized through a wide range of techniques: x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Raman Spectroscopy, ultraviolet photoelectron spectroscopy (UPS), and thermogravimetric analysis (TGA).

References

  1. ^ Comey, Arthur Messinger; Hahn, Dorothy A. (February 1921). A Dictionary of Chemical Solubilities: Inorganic (2nd ed.). New York: The MacMillan Company. p. 884.
  2. ^ Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0.
  3. ^ Sigma-Aldrich Co., Silver thiocyanate. Retrieved on 2014-07-19.
  4. ^ Anatolievich, Kiper Ruslan. "silver thiocyanate". chemister.ru. Retrieved 2014-07-19.
  5. ^ Zhu, H.-L.; Liu, G.-F.; Meng, F.-J. (2003). "Refinement of the crystal structure of silver(I) thiocyanate, AgSCN". Zeitschrift für Kristallographie – New Crystal Structures. 218 (JG). München: Oldenbourg Wissenschaftsverlag GmbH: 263–264. doi:10.1524/ncrs.2003.218.jg.285. ISSN 2197-4578.
  6. Kästner, Claudia; Lampen, Alfonso; Thünemann, Andreas F. (2018-02-22). "What happens to the silver ions? – Silver thiocyanate nanoparticle formation in an artificial digestion". Nanoscale. 10 (8): 3650–3653. doi:10.1039/C7NR08851E. ISSN 2040-3372. PMID 29431819.
  7. "SILVER THIOCYANATE | 1701-93-5". ChemicalBook. Retrieved 2023-11-20.
  8. "ScienceDirect.com | Science, health and medical journals, full text articles and books". www.sciencedirect.com. Retrieved 2023-11-20.
  9. Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng (2014-05-01). "Synthesis and photocatalytic property of a new silver thiocyanate semiconductor". Chemical Engineering Journal. 243: 24–30. doi:10.1016/j.cej.2014.01.015. ISSN 1385-8947.
  10. Kästner, Claudia; Lampen, Alfonso; Thünemann, Andreas F. (2018). "What happens to the silver ions? – Silver thiocyanate nanoparticle formation in an artificial digestion". Nanoscale. 10 (8): 3650–3653. doi:10.1039/C7NR08851E. ISSN 2040-3364. PMID 29431819.
  11. Yang, Ming; Ma, Jing (2009-09-15). "Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor". Applied Surface Science. 255 (23): 9323–9326. Bibcode:2009ApSS..255.9323Y. doi:10.1016/j.apsusc.2009.07.028. ISSN 0169-4332.
  12. Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng (2014-05-01). "Synthesis and photocatalytic property of a new silver thiocyanate semiconductor". Chemical Engineering Journal. 243: 24–30. doi:10.1016/j.cej.2014.01.015. ISSN 1385-8947.
Stub icon

This inorganic compound–related article is a stub. You can help Misplaced Pages by expanding it.

Silver compounds
Silver(0,I)
Silver(I)
Organosilver(I) compounds
  • AgC2H3O2
  • AgC22H43O2
  • CH3CH(OH)COOAg
  • C
    18H
    36AgO
    2
  • AgC4H3N2NSO2C6H4NH2
  • AgC
    11H
    23COO
  • Silver(II)
    Silver(III)
    Silver(I,III)
    Categories: