Misplaced Pages

Triangular hebesphenorotunda

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
92nd Johnson solid (20 faces)
Triangular hebesphenorotunda
TypeJohnson
J91J92J1
Faces13 triangles
3 squares
3 pentagons
1 hexagon
Edges36
Vertices18
Vertex configuration3(3.5)
6(3.4.3.5)
3(3.5.3.5)
2.3(3.4.6)
Symmetry groupC3v
Dual polyhedron-
Propertiesconvex, elementary
Net
3D model of a triangular hebesphenorotunda

In geometry, the triangular hebesphenorotunda is a Johnson solid with 13 equilateral triangles, 3 squares, 3 regular pentagons, and 1 regular hexagon, making the total of its faces is 20.

Properties

The triangular hebesphenorotunda is named by Johnson (1966), with the prefix hebespheno- referring to a blunt wedge-like complex formed by three adjacent lunes—a figure where two equilateral triangles are attached at the opposite sides of a square. The suffix (triangular) -rotunda refers to the complex of three equilateral triangles and three regular pentagons surrounding another equilateral triangle, which bears a structural resemblance to the pentagonal rotunda. Therefore, the triangular hebesphenorotunda has 20 faces: 13 equilateral triangles, 3 squares, 3 regular pentagons, and 1 regular hexagon. The faces are all regular polygons, categorizing the triangular hebesphenorotunda as the Johnson solid, enumerated the last one J 92 {\displaystyle J_{92}} . It is elementary polyhedra, meaning that it cannot be separated by a plane into two small regular-faced polyhedra.

The surface area of a triangular hebesphenorotunda of edge length a {\displaystyle a} as: A = ( 3 + 1 4 1308 + 90 5 + 114 75 + 30 5 ) a 2 16.389 a 2 , {\displaystyle A=\left(3+{\frac {1}{4}}{\sqrt {1308+90{\sqrt {5}}+114{\sqrt {75+30{\sqrt {5}}}}}}\right)a^{2}\approx 16.389a^{2},} and its volume as: V = 1 6 ( 15 + 7 5 ) a 3 5.10875 a 3 . {\displaystyle V={\frac {1}{6}}\left(15+7{\sqrt {5}}\right)a^{3}\approx 5.10875a^{3}.}

Cartesian coordinates

The triangular hebesphenorotunda with edge length 5 1 {\displaystyle {\sqrt {5}}-1} can be constructed by the union of the orbits of the Cartesian coordinates: ( 0 , 2 τ 3 , 2 τ 3 ) , ( τ , 1 3 τ 2 , 2 3 ) ( τ , τ 3 , 2 3 τ ) , ( 2 τ , 0 , 0 ) , {\displaystyle {\begin{aligned}\left(0,-{\frac {2}{\tau {\sqrt {3}}}},{\frac {2\tau }{\sqrt {3}}}\right),\qquad &\left(\tau ,{\frac {1}{{\sqrt {3}}\tau ^{2}}},{\frac {2}{\sqrt {3}}}\right)\\\left(\tau ,-{\frac {\tau }{\sqrt {3}}},{\frac {2}{{\sqrt {3}}\tau }}\right),\qquad &\left({\frac {2}{\tau }},0,0\right),\end{aligned}}} under the action of the group generated by rotation by 120° around the z-axis and the reflection about the yz-plane. Here, τ {\displaystyle \tau } denotes the golden ratio.

References

  1. Johnson, N. W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, S2CID 122006114, Zbl 0132.14603.
  2. ^ Berman, M. (1971), "Regular-faced convex polyhedra", Journal of the Franklin Institute, 291 (5): 329–352, doi:10.1016/0016-0032(71)90071-8, MR 0290245.
  3. Francis, D. (August 2013), "Johnson solids & their acronyms", Word Ways, 46 (3): 177.
  4. Cromwell, P. R. (1997), Polyhedra, Cambridge University Press, p. 86–87, 89, ISBN 978-0-521-66405-9.
  5. Timofeenko, A. V. (2009), "The non-Platonic and non-Archimedean noncomposite polyhedra", Journal of Mathematical Science, 162 (5): 717, doi:10.1007/s10958-009-9655-0, S2CID 120114341.

External links

Johnson solids
Pyramids, cupolae and rotundae
Modified pyramids
Modified cupolae and rotundae
Augmented prisms
Modified Platonic solids
Modified Archimedean solids
Other elementary solids
(See also List of Johnson solids, a sortable table)
Categories: