Misplaced Pages

Guyou hemisphere-in-a-square projection

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Conformal map projection
Guyou doubly periodic projection of the world.
The Guyou hemisphere-in-a-square projection with Tissot's indicatrix of deformation. The indicatrix is omitted at the singular points. At those points the deformation is infinite; the indicatrix would be infinite in size.

The Guyou hemisphere-in-a-square projection is a conformal map projection for the hemisphere. It is an oblique aspect of the Peirce quincuncial projection.

History

The projection was developed by Émile Guyou [fr] of France in 1887.

Formal description

The projection can be computed as an oblique aspect of the Peirce quincuncial projection by rotating the axis 45 degrees. It can also be computed by rotating the coordinates −45 degrees before computing the stereographic projection; this projection is then remapped into a square whose coordinates are then rotated 45 degrees.

The projection is conformal except for the four corners of each hemisphere's square. Like other conformal polygonal projections, the Guyou is a Schwarz–Christoffel mapping.

Properties

Its properties are very similar to those of the Peirce quincuncial projection:

  • Each hemisphere is represented as a square, the sphere as a rectangle of aspect ratio 2:1.
  • The part where the exaggeration of scale amounts to double that at the centre of each square is only 9% of the area of the sphere, against 13% for the Mercator and 50% for the stereographic
  • The curvature of lines representing great circles is, in every case, very slight, over the greater part of their length.
  • It is conformal everywhere except at the corners of the square that corresponds to each hemisphere, where two meridians change direction abruptly twice each; the Equator is represented by a horizontal line.
  • It can be tessellated in all directions.

Related projections

See also

References

  1. E. Guyou (1887) "Nouveau système de projection de la sphère: Généralisation de la projection de Mercator", Annales Hydrographiques, Ser. 2, Vol. 9, 16–35. https://www.retronews.fr/journal/annales-hydrographiques/1-janvier-1887/1877/4868382/23
  2. Snyder, John P. (1993). Flattening the Earth. University of Chicago. ISBN 0-226-76746-9.
  3. Lee, L. P. (1976). Conformal Projections Based on Elliptic Functions. Cartographica Monographs. Vol. 16. Toronto: B. V. Gutsell, York University. ISBN 0-919870-16-3. Supplement No. 1 to The Canadian Cartographer 13.
  4. ^ C.S. Peirce (December 1879). "A Quincuncial Projection of the Sphere". American Journal of Mathematics. 2 (4). The Johns Hopkins University Press: 394–396. doi:10.2307/2369491. JSTOR 2369491.
Map projection
By surface
Cylindrical
Mercator-conformal
Equal-area
Pseudocylindrical
Equal-area
Conical
Pseudoconical
Azimuthal
(planar)
General perspective
Pseudoazimuthal
By metric
Conformal
Equal-area
Bonne
Bottomley
Cylindrical
Tobler hyperelliptical
Equidistant in
some aspect
Gnomonic
Loxodromic
Retroazimuthal
(Mecca or Qibla)
By construction
Compromise
Hybrid
Perspective
Planar
Polyhedral
See also
Category: