Misplaced Pages

Propyne

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Methylacetylene) Hydrocarbon compound (HC≡C–CH3) Not to be confused with propane or propene.
Propyne
Methylacetylene
Methylacetylene
Names
Preferred IUPAC name Propyne
Other names Methylacetylene
Methyl acetylene
Allylene
Identifiers
CAS Number
3D model (JSmol)
Beilstein Reference 878138
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.754 Edit this at Wikidata
EC Number
  • 200-828-4
MeSH C022030
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C3H4/c1-3-2/h1H,2H3Key: MWWATHDPGQKSAR-UHFFFAOYSA-N
  • InChI=1/C3H4/c1-3-2/h1H,2H3Key: MWWATHDPGQKSAR-UHFFFAOYAI
SMILES
  • CC#C
Properties
Chemical formula C3H4
Molar mass 40.0639 g/mol
Appearance Colorless gas
Odor Sweet
Density 0.53 g/cm
Melting point −102.7 °C (−152.9 °F; 170.5 K)
Boiling point −23.2 °C (−9.8 °F; 250.0 K)
Vapor pressure 5.2 atm (20°C)
Hazards
Explosive limits 1.7%-?
NIOSH (US health exposure limits):
PEL (Permissible) TWA 1000 ppm (1650 mg/m)
REL (Recommended) TWA 1000 ppm (1650 mg/m)
IDLH (Immediate danger) 1700 ppm
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Propyne (methylacetylene) is an alkyne with the chemical formula CH3C≡CH. It is a component of MAPD gas—along with its isomer propadiene (allene), which was commonly used in gas welding. Unlike acetylene, propyne can be safely condensed.

Production and equilibrium with propadiene

Propyne exists in equilibrium with propadiene, the mixture of propyne and propadiene being called MAPD:

H 3 CC CH H 2 C = C = CH 2 {\displaystyle {\ce {H3CC#CH <=> H2C=C=CH2}}}

The coefficient of equilibrium Keq is 0.22 at 270 °C or 0.1 at 5 °C. MAPD is produced as a side product, often an undesirable one, by cracking propane to produce propene, an important feedstock in the chemical industry. MAPD interferes with the catalytic polymerization of propene.

Laboratory methods

Propyne can also be synthesized on laboratory scale by reducing 1-propanol, allyl alcohol or acetone vapors over magnesium.

Use as a rocket fuel

European space companies have researched using light hydrocarbons with liquid oxygen, a relatively high performing liquid rocket propellant combination that would also be less toxic than the commonly used MMH/NTO (monomethylhydrazine/nitrogen tetroxide). Their research showed that propyne would be highly advantageous as a rocket fuel for craft intended for low Earth orbital operations. They reached this conclusion based upon a specific impulse expected to reach 370 s with oxygen as the oxidizer, a high density and power density—and the moderate boiling point, which makes the chemical easier to store than cryogenic fuels that must be kept at extremely low temperatures.

Organic chemistry

Propyne is a convenient three-carbon building block for organic synthesis. Deprotonation with n-butyllithium gives propynyllithium. This nucleophilic reagent adds to carbonyl groups, producing alcohols and esters. Whereas purified propyne is expensive, MAPP gas could be used to cheaply generate large amounts of the reagent.

Propyne, along with 2-butyne, is also used to synthesize alkylated hydroquinones in the total synthesis of vitamin E.

The chemical shift of an alkynyl proton and propargylic proton generally occur in the same region of the H NMR spectrum. In propyne, these two signals have almost exactly the same chemical shifts, leading to overlap of the signals, and the H NMR spectrum of propyne, when recorded in deuteriochloroform on a 300 MHz instrument, consists of a single signal, a sharp singlet resonating at 1.8 ppm.

In Astrophysics

Propyne has been detected in multiple astrophysical objects following its first observation in 1973 in the galactic center giant molecular cloud Sgr B2 using radio astronomy techniques. Propyne has been proposed to act as a precursor molecule to the formation of PAHs in space, such as indene.

Propyne has been detected by infrared spectroscopy in the chemically reducing atmospheres of the outer planets in our solar system, including on Jupiter in 2000 and on Saturn in 1997, both using the Infrared Space Observatory; on Titan in 1981 using Voyager's IRIS instrument; and on the ice giants Uranus in 2006 and on Neptune in 2008 using the Spitzer space telescope.

Notes

  1. "Prop-1-yne" mistake fixed in the errata Archived 2019-08-01 at the Wayback Machine. The locant is omitted according to P-14.3.4.2 (d), p. 31 for propene and P-31.1.1.1, Examples, p. 374 for propyne.

References

  1. "Characteristic (Functional) and Substituent Groups". Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 374. doi:10.1039/9781849733069-00372. ISBN 978-0-85404-182-4.
  2. ^ NIOSH Pocket Guide to Chemical Hazards. "#0392". National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Peter Pässler, Werner Hefner, Klaus Buckl, Helmut Meinass, Andreas Meiswinkel, Hans-Jürgen Wernicke, Günter Ebersberg, Richard Müller, Jürgen Bässler, Hartmut Behringer, Dieter Mayer, "Acetylene" in Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim 2007 (doi:10.1002/14356007.a01_097.pub2).
  4. Keiser, Edward & Breed, Mary (1895). "The Action of Magnesium Upon the Vapors of the Alcohols and a New Method of Preparing Allylene". Journal of the Franklin Institute. CXXXIX (4): 304–309. doi:10.1016/0016-0032(85)90206-6. Retrieved 20 February 2014.
  5. Reiser, Edward II. (1896). "The preparation of Allylene, and the Action of Magnesium upon Organic Compounds". The Chemical News and Journal of Industrial Science. LXXIV: 78–80. Retrieved 20 February 2014.
  6. Valentian, Dominique; Sippel, Martin; Grönland, Tor-Arne; Baker, Adam; van Den Meulen, Jaap; Fratacci, Georges; Caramelli, Fabio (2004). "Green propellants options for launchers, manned capsules and interplanetary missions" (PDF). la.dlr.de. DLR Lampoldshausen. Archived from the original (PDF) on 2006-01-10.
  7. Michael J. Taschner; Terry Rosen; Clayton H. Heathcock (1990). "Ethyl Isocrotonate". Organic Syntheses; Collected Volumes, vol. 7, p. 226.
  8. US patent 5744071, Philip Franklin Sims, Anne Pautard-Cooper, "Processes for preparing alkynyl ketones and precursors thereof", issued 1996-11-19 
  9. Reppe, Walter; Kutepow, N & Magin, A (1969). "Cyclization of Acetylenic Compounds". Angewandte Chemie International Edition in English. 8 (10): 727–733. doi:10.1002/anie.196907271.
  10. Loudon, Marc; Parise, Jim (2015-08-26). Organic chemistry. Parise, Jim, 1978- (Sixth ed.). Greenwood Village, Colorado: W. H. Freeman. ISBN 9781936221349. OCLC 907161629.
  11. Snyder, L. E.; Buhl, D. (May 1973). "Interstellar Methylacetylene and Isocyanic Acid". Nature Physical Science. 243 (125): 45–46. doi:10.1038/physci243045a0. ISSN 2058-1106.
  12. Abplanalp, Matthew J.; Góbi, Sándor; Kaiser, Ralf I. (2019-03-06). "On the formation and the isomer specific detection of methylacetylene (CH3CCH), propene (CH3CHCH2), cyclopropane (c-C3H6), vinylacetylene (CH2CHCCH), and 1,3-butadiene (CH2CHCHCH2) from interstellar methane ice analogues". Physical Chemistry Chemical Physics. 21 (10): 5378–5393. doi:10.1039/C8CP03921F. ISSN 1463-9084.
  13. Fouchet, T.; Lellouch, E.; Bezard, B.; Feuchtgruber, H.; Drossart, P.; Encrenaz, T. (2000), Jupiter's hydrocarbons observed with ISO-SWS: vertical profiles of C2H6 and C2H2, detection of CH3C2H, doi:10.48550/ARXIV.ASTRO-PH/0002273, retrieved 2025-01-05
  14. de Graauw, T.; Feuchtgruber, H.; Bezard, B.; Drossart, P.; Encrenaz, T.; Beintema, D. A.; Griffin, M.; Heras, A.; Kessler, M.; Leech, K.; Lellouch, E.; Morris, P.; Roelfsema, P. R.; Roos-Serote, M.; Salama, A. (1997-05-01). "First results of ISO-SWS observations of Saturn: detection of CO_2_, CH_3_C_2_H, C_4_H_2_ and tropospheric H_2_O". Astronomy and Astrophysics. 321: L13 – L16. ISSN 0004-6361.
  15. Maguire, W. C.; Hanel, R. A.; Jennings, D. E.; Kunde, V. G.; Samuelson, R. E. (August 1981). "C3H8 and C3H4 in Titan's atmosphere". Nature. 292 (5825): 683–686. doi:10.1038/292683a0. ISSN 1476-4687.
  16. Burgdorf, Martin; Orton, Glenn; van Cleve, Jeffrey; Meadows, Victoria; Houck, James (2006-10-01). "Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy". Icarus. 184 (2): 634–637. doi:10.1016/j.icarus.2006.06.006. ISSN 0019-1035.
  17. Meadows, Victoria S.; Orton, Glenn; Line, Michael; Liang, Mao-Chang; Yung, Yuk L.; Van Cleve, Jeffrey; Burgdorf, Martin J. (2008-10-01). "First Spitzer observations of Neptune: Detection of new hydrocarbons". Icarus. 197 (2): 585–589. doi:10.1016/j.icarus.2008.05.023. ISSN 0019-1035.

External links

Alkynes
Preparations
Reactions
Molecules detected in outer space
Molecules
Diatomic







Triatomic
Four
atoms
Five
atoms
Six
atoms
Seven
atoms
Eight
atoms
Nine
atoms
Ten
atoms
or more
Deuterated
molecules
Unconfirmed
Related
Binary compounds of hydrogen
Alkali metal
(Group 1) hydrides
Alkaline (Group 2)
earth hydrides
Monohydrides
Dihydrides
Group 13
hydrides
Boranes
Alanes
Gallanes
Indiganes
Thallanes
Nihonanes (predicted)
  • NhH
  • NhH3
  • Nh2H6
  • NhH5
Group 14 hydrides
Hydrocarbons
Silanes
Silenes
Silynes
Germanes
Stannanes
Plumbanes
Flerovanes (predicted)
  • FlH
  • FlH2
  • FlH4
Pnictogen
(Group 15) hydrides
Azanes
Azenes
Phosphanes
Phosphenes
Arsanes
Stibanes
Bismuthanes
Moscovanes
Hydrogen
chalcogenides
(Group 16 hydrides)
Polyoxidanes
  • H2O
  • H2O2
  • H2O3
  • H2O4
  • H2O5
  • more...
  • Polysulfanes
    Selanes
    Tellanes
    Polanes
    Livermoranes
    Hydrogen halides
    (Group 17 hydrides)
  • HF
  • HCl
  • HBr
  • HI
  • HAt
  • HTs (predicted)
  • Transition
    metal hydrides
    Lanthanide hydrides
    Actinide hydrides
    Exotic matter hydrides
    Categories: